Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Механизмы, лежащие в основе законов Г.Менделя.




Механизмы, лежащие в основе законов Г. Менделя:

 1. Мейоз

2. Оплодотворение

Условия выполнения законов Менделя

Законы И. Менделя являются фундаментальными законами генетики (подобно законам Ньютона в физике). Однако они (как и любые законы природы) выполняются только при наличии определенных условий:

1.Моногенное наследование (элементарные признаки). Это означает, что за один признак отвечает один ген. Тогда выстраивается логическая цепочка: «один ген – один полипептид; один полипептид – один фермент; один фермент – одна реакция; одна реакция – один признак». 2. Полное доминирование.

3. Отсутствие взаимодействия генов. Гены, отвечающие за развитие разных признаков (например, А и В) не влияют друг на друга, не взаимодействуют между собой.

4. Отсутствие сцепления генов. Гены, отвечающие за развитие разных признаков (например, А и В), не сцеплены между собой в группе сцепления генов, а сочетания их аллелей образуются случайным образом в равных соотношениях.

5..Чистые гаметы - гаметы «чисты», т.е из пары аллелей в половых клетках присутствует один аллель. Выполняется правило чистоты гамет (правило чистоты гамет не является законом). 6.Равновероятность встречи гамет и образования зигот.

7.Равная выживаемость гамет, зигот, особей. Жизнеспособность которых не зависит от их генотипа и фенотипа.

8.Статистический характер: Законы Менделя носят статистический характер: отклонение от теоретически ожидаемого расщепления тем меньше, чем больше число наблюдений (большие выборки).

9.Полная пенетрантность. Каждому генотипу соответствует определенный фенотип (100%-ная пенетрантность признаков).

10.Полная экспрессивность. У всех особей с данным генотипом признак выражен в равной степени (100%-ная экспрессивность признаков).

11. Изучаемые признаки НЕ сцеплены с полом.

12.Стабильность признаков в онтогенезе в разных условиях.

13.Ядерное наследование (имеются не менделирующие признаки цитоплазматической наследственности) При Несоблюдении перечисленных условий наследование признаков приобретает более сложный характер.



Вопрос 28. Расположение генов в группе сцепления. Механизм кроссинговера и условия его реализации. Построение хромосомных карт.

Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются, как правило, вместе.
Число групп сцепления у диплоидных организмов равно гаплоидному набору хромосом. У женщин – 23 группы сцепления, у мужчин – 24.
Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совместное наследование, возможно при отсутствии процесса кроссинговера. Это характерно для генов половых хромосом, гетерогаметных по половым хромосомам организмов (ХУ, ХО) , а также для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.
В большинстве случаев гены, локализованные в одной хромосоме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромосомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происходит рекомбинация генов.
Гаметы и зиготы, содержащие рекомбинации сцепленных генов, называют кроссоверными. Зная число кроссоверных гамет и общее количество гамет данной особи, можно вычислить частоту кроссинговера в процентах по формуле: отношение числа кроссоверных гамет (особей) к общему числу гамет (особей) умножить на 100 %.
По проценту кроссинговера между двумя генами можно определить расстояние между ними единица расстояния 1 % кроссинговера.
Частота кроссинговера говорит и о силе сцепления между генами. Сила сцепления между двумя генами равна разности между 100 % и процентом кроссинговера между этими генами.

На основании анализа результатов многочисленных экспериментов с мухой дрозофилой Т. Морган сформулировал свою хромосомную теорию наследственности, сущность которой заключается в следующем:
1. Материальные носители наследственности — гены — находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга.
2. Гены, расположенные в одной хромосоме, наследуются сцепленно. Число групп сцепления соответствует гаплоидному числу хромосом.
3. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно.
4. В потомстве гетерозиготных родителей новое сочетание генов, расположенных в одной паре хромосом, может возникнуть в результате кроссинговера в процессе мейоза.
5. Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
6. На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Кроссинговер— перекрест, взаимный обмен гомо­логичными участками гомологичных хромосом в результа­те разрыва и соединения в новом порядке их нитей — хроматид; приводит к новым комбинациям аллелей разных генов. Важнейший механизм, обеспечивающий комбинативную изменчивость в популяциях и тем самым дающий материал для естественного отбора. Протекает в мейотически, реже — в митотически делящихся клетках. Может приводить к перекомбинации больших участков хромосо­мы с несколькими генами или частей одного гена (внутригенный кроссинговер), обеих нитей молекулы ДНК или только одной. Частота кроссинговера между генами отра­жает расстояние между ними в хромосоме. Иными слова­ми, в паре гомологичных хромосом между несестринскими хроматидами происходит обмен гомологичными участка­ми. Поскольку в паре хромосом одна хромосома происхо­дит от матери, а другая — от отца, процесс кроссинговера ведет к внутрихромосомным рекомбинациям наследствен­ности.













Хромосомные карты

Генетической картой хромосомы называется схема относительного расположения генов, входящих в состав одной хромосомы и принадлежащих к одной группе сцепления. Для составления хромосомной карты необходимо определить число групп сцепления, затем принадлежность гена к той или иной группе сцепления и, наконец, расположение гена в хромосоме по отношению к другим генам.

Следует учитывать, что для определения места гена в хромосоме необходимо знать частоту его перекреста с двумя другими генами, а также этих двух генов между собой. Определяя взаимное расположение генов в пределах одной группы сцепления, можно в итоге схематически изобразить порядок расположения генов в хромосоме и расстояния между ними. Таким образом строится генетическая карта хромосомы. Для ее составления необходимо изучить большое число мутантных генов.

Генетические карты составляют для каждой пары гомологичных хромосом. Каждой паре присваивается номер (I, II, III и т.д.), группы сцепления номеруются в порядке их обнаружения. Кроме номера в каждой из групп сцепления указывают полное или сокращенное название генов, расстояние этих генов в единицах перекреста от одного из концов хромосомы, а также место расположения центромеры. Следует отметить, что длина хромосомы не обязательно является показателем ее генетической активности. Для генетических карт применяется термин «локус» для обозначения места гена в хромосоме или на ее карте.










Последнее изменение этой страницы: 2018-04-12; просмотров: 403.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...