Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Simple to complex: a molecular perspective




Modern synthetic chemistry has reached the point where it is possible to prepare small molecules to almost any structure. These methods are used today to manufacture a wide variety of useful chemicals such as pharmaceuticals or commercial polymers. This ability raises the question of extending this kind of control to the next-larger level, seeking methods to assemble these single molecules into supramolecular assemblies consisting of many molecules arranged in a well defined manner.

These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific configuration or arrangement is favored due to non-covalent intermolecular forces. The Watson–Crick basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate, or the specific folding of the protein itself. Thus, two or more components can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.

Such bottom-up approaches should be capable of producing devices in parallel and be much cheaper than top-down methods, but could potentially be overwhelmed as the size and complexity of the desired assembly increases. Most useful structures require complex and thermodynamically unlikely arrangements of atoms. Nevertheless, there are many examples of self-assembly based on molecular recognition in biology, most notably Watson–Crick basepairing and enzyme-substrate interactions. The challenge for nanotechnology is whether these principles can be used to engineer new constructs in addition to natural ones.

 

 

From the history of electricity

 

Long before any knowledge of electricity existed people were aware of shocks from electric fish. Ancient Egyptian texts dating from 2750 BC referred to these fish as the "Thunderer of the Nile", and described them as the "protectors" of all other fish. Electric fish were again reported millennia later by ancient Greek, Roman and Arabic naturalists and physicians. Several ancient writers, such as Pliny the Elder and Scribonius Largus, attested to the numbing effect of electric shocks delivered by catfish and torpedo rays, and knew that such shocks could travel along conducting objects. Patients suffering from ailments such as gout or headache were directed to touch electric fish in the hope that the powerful jolt might cure them. Possibly the earliest and nearest approach to the discovery of the identity of lightning, and electricity from any other source, is to be attributed to the Arabs, who before the 15th century had the Arabic word for lightning (raad) applied to the electric ray.

Electricity would remain little more than an intellectual curiosity for millennia until 1600, when the English scientist William Gilbert made a careful study of electricity and magnetism, distinguishing the lodestone effect from static electricity produced by rubbing amber. He coined the New Latin word electricus ("of amber" or "like amber", from ήλεκτρον [elektron], the Greek word for "amber") to refer to the property of attracting small objects after being rubbed. This association gave rise to the English words "electric" and "electricity", which made their first appearance in print in Thomas Browne's Pseudodoxia Epidemica of 1646.

 

 

Water pressure

 

Water pressures vary in different locations of a distribution system. Water mains below the street may operate at higher pressures, with a pressure reducer located at each point where the water enters a building or a house. In poorly managed systems, water pressure can be so low as to result only in a trickle of water or so high that it leads to damage to plumbing fixtures and waste of water. Pressure in an urban water system is typically maintained either by a pressurized water tank serving an urban area, by pumping the water up into a tower and relying on gravity to maintain a constant pressure in the system or solely by pumps at the water treatment plant and repeater pumping stations.

Typical UK pressures are 4-5 bar for an urban supply. However, some people can get over eight bars or below one bar. A single iron main pipe may cross a deep valley, it will have the same nominal pressure, however each consumer will get a bit more or less because of the hydrostatic pressure (about 1 bar/10m height). So people at the bottom of a 100-foot (30 m) hill will get about 3 bars more than those at the top.

The effective pressure also varies because of the supply resistance even for the same static pressure. An urban consumer may have 5 metres of ½" lead pipe running from the iron main, so the kitchen tap flow will be fairly unrestricted, so high flow. A rural consumer may have a kilometre of rusted and limed ¾" iron pipe so their kitchen tap flow will be small.

For this reason the UK domestic water system has traditionally (prior to 1989) employed a "cistern feed" system, where the incoming supply is connected to the kitchen sink and also a header/storage tank in the attic. Water can dribble into this tank through a ½" lead pipe, plus ball valve, and then supply the house on 22 or 28 mm pipes. Gravity water has a small pressure (say ¼ bar in the bathroom) but needs wide pipes allow higher flows. This is fine for baths and toilets but is frequently inadequate for showers. People install shower booster pumps to increase the pressure. For this reason urban houses are increasingly using mains pressure boilers (combies) which take a long time to fill a bath but suit the high back pressure of a shower.

 

Приложение 2

Блок 2

Модуль 2

Статьи для реферирования

 

Tchaikovsky's prize-giving tease

by Andy Potts on 01/07/2011

The Moscow News

 

The winner of the Grand Prix at the Tchaikovsky International Competition remains a secret for a while longer – but most of the other prizes have been announced.

After a gala performance in Moscow a delayed award ceremony handed out medals in the instrumental and vocal classes, but kept a packed house on tenterhooks waiting for news of the biggest prize.

Culture minister Alexander Avdeyev delighted in teasing the music lovers who thronged the Great Hall of the Moscow Conservatory, telling them: “We know the names of all the winners, but today we do not reveal all the secrets.

“The Grand Prix will be announced [on Sunday] after the concert in St. Petersburg.”

The crowd roared its disapproval, RIA Novosti reported.

 

No violin prize

The organizers had promised to award gold medals in all categories – previous years had prompted scandals when the top prizes were withdrawn – but that did not happen as planned.

There was no gold for the violinists, where Sergei Dogadin of Russia and Israel’s Itamar Zormarom shared silver.

And the cello contest, which was won by Narek Nakhnazaryan, also raised eyebrows.

Earlier in the competition there were claims that conductor Mark Gorenstein had racially abused the Armenian youngster during a rehearsal.

Gorenstein later apologized and Nakhnazaryan went on to take the audience prize as well as the jury’s awards.

Daniel Trifonov ensured a home win in the piano section, and added the audience award, while Koreans Park and Sun Jung Seo took the top awards in the vocal section.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 218.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...