Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Первый закон термодинамики.




Формулировка:

В изолированной термодинамической системе сумма всех видов энергии является величиной постоянной.

Этот закон является частным случаем всеобщего закона сохранения и превращения энергии, который гласит, что энергия не появляется и не исчезает, а только переходит из одного вида в другой. Из этого закона следует, что уменьшение общей энергии в одной системе, состоящей из одного или множества тел, должно сопровождаться увеличением энергии в другой системе тел. Существую другие формулировки этого закона:

1. Не возможно возникновение или уничтожение энергии (эта формулировка говорит о невозможности возникновения энергии из ничего и уничтожения ее в ничто).

2. Любая форма движения способна и должна превращаться в любую другую форму движения (эта философская формулировка подчеркивает не уничтожимость энергии и ее способность взаимопревращаться в любые другие виды энергии).

3. Вечный двигатель первого рода невозможен. (Под вечным двигателем первого рода понимают машину, которая была бы способна производить работу не используя никакого источника энергии).

4. Теплота и работа являются двумя единственно возможными формами передачи энергии от одних тел к другим

Второй закон термодинамики.

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту, не устанавливая условий, при которых возможны эти превращения. Повседневные наблюдения и опыты показывают, что теплота сама может переходить только от нагретых тел к более холодным (до полного равновесия). Только за счет затраты работы можно изменить направление движения теплоты. Это свойство теплоты резко отличается от работы. Работа легко и полностью превращается в теплоту.

В тепловых машинах превращение теплоты в работу происходит только при наличии разности температур между источниками теплоты и теплоприемниками. При этом вся теплота не может быть превращена в работу. Закон, позволяющий указать направление теплового потока, и устанавливающий максимально возможный предел превращения теплоты в работу в тепловых машинах - 2-й закон термодинамики.

Формулировки второго закона термодинамики:

1. Вечный двигатель второго рода не возможен (под вечным двигателем второго рода понимается машина, которая могла бы превращать всю подводимую к ней теплоту в работу. Такая машина имела бы КПД = 1).

2. Стопроцентное превращение теплоты в работу посредством тепловой машины - двигателя невозможно. Условия работы тепловых машин:

1. Тепловая машина всегда работает в определенном перепаде температур. (Это значит, что для работы такой машины необходим иметь по крайней мере 1 источник теплоты, и 1 приемник теплоты).

2. Любая тепловая машина должна работать циклично, т.е. рабочее тело, совершая за определенный промежуток времени ряд процессов расширения и сжатия, должно возвращаться в исходное состояние.

Основной смысл третьего закона сводится к утверждения, что при абсолютном нуле температура энтропия правильно образованного кристалла любого соединения в чистом состоянии равно нулю. При любом другом состоянии вещества его энтропия больше нуля.

 

 

Смачивание капиллярные явления

Смачивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкостью при условии, что присутствует третья (обычно, но не обязательно, газовая) фаза, причём происходит одновременный контакт всех этих трёх не смешивающихся фаз. Смачивание ответственно за растекание жидкости по твёрдой поверхности, за форму лежащих на ней капель, за пропитывание порошков и пористых веществ (капиллярные явления) и др.

Смачивание бывает двух видов:

· Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)

· Контактное (состоит из 3х фаз-твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока(2008) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности ( лакокрасочная, фармацевтическая, косметическая и т.д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

Капиллярные явления

Капиллярные явления - физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К капиллярным явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 — p2 = 2s12/r, где (s12 — поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе) 2. В случае вогнутой поверхности жидкости (r < 0) давление в ней понижено по сравнению с давлением в соседней фазе: p1 < p2 и Dp < 0. Для выпуклых поверхностей (r > 0) знак Dp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела (r = ¥) такая составляющаяотсутствует и Dp = 0.

Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).

Высота поднятия жидкости в капиллярной трубке h определяется уравновешиванием лапласовского и гидростатичесого давлений:

Высота подъёма (опускания) уровня жидкости в капилляре будет равна:

, где

· ρ - плотность жидкости

· σ - поверхностное натяжение

· R - радиус сферической формы мениска

КОЛЛОИДНЫЕ СИСТЕМЫ

Коллоидные системы — дисперсные системы, промежуточные между истинными растворами и грубодисперсными системами —взвесями. Или это система, в которой дискретные частицы, капли или пузырьки дисперсной фазы, имеющие размер хотя бы в одном из измерений от 1 до 100 нм, распределены в другой фазе, обычно непрерывной, отличающейся от первой по составу или агрегатному состоянию и именуемой дисперсионной средой.

В свободнодисперсных коллоидных системах (дымы, золи) частицы не выпадают в осадок.

Основные свойства:

· Коллоидные частицы не препятствуют прохождению света.

· В прозрачных коллоидах наблюдается рассеивание светового луча (эффект Тиндаля).

Эффект Тиндаля, рассеяние Тиндаля (англ. Tyndall effect) — оптический эффект, рассеяние света при прохождении светового пучка через оптически неоднородную среду. Обычно наблюдается в виде светящегося конуса (конус Тиндаля), видимого на тёмном фоне.

Характерен для растворов коллоидных систем (например, золей, металлов, разбавленных латексов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления. На эффекте Тиндаля основан ряд оптических методов определения размеров, формы и концентрации коллоидных частиц и макромолекул.

Эффект Тиндаля назван по имени открывшего его Джона Тиндаля.

 

Кажется, что мука, растворенная в воде, имеет синий цвет. Этот эффект объясняется тем, что синий свет рассеян частицами муки более сильно, чем красный свет.

· Дисперсные частицы не выпадают в осадок — Броуновское движение поддерживает их во взвешенном состоянии.

Бро́уновское движе́ние —беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Основные виды:

· дым — взвесь твёрдых частиц в газе.

· туман — взвесь жидких частиц в газе.

· аэрозоль — состоит из мелких твёрдых или жидких частиц, взвешенных в газовой среде

· пена — взвесь газа в жидкости или твёрдом теле.

· эмульсия — взвесь жидких частиц в жидкости.

· золь — ультрамикрогетерогенная дисперсная система.

· гель — взвесь жидких частиц в твёрдом теле.

· суспензия — взвесь твёрдых частиц в жидкости.

 










Последнее изменение этой страницы: 2018-06-01; просмотров: 203.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...