Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Улучшение экологических показателей автомобильных двигателей




 Загрязнение атмосферного воздуха в результате работы автомобиля обусловлено тремя основными источниками: системой выпуска отработанных газов, системой смазки и вентиляции картера, системой питания. На долю выхлопных газов приходится наибольшая часть (70-80 %) вредных веществ, выделяемых автомобильным двигателем. Камера сгорания двигателя - это своеобразный химический реактор, синтезирующий вредные вещества, которые затем поступают в атмосферу. Даже нейтральный азот из атмосферы, попадая в камеру сгорания двигателя, превращается в ядовитые оксиды азота. В отработанных газах содержится более 200 различных химических соединений, из них около 150 -

производные углеводородов, прямо обязанные своим появлением неполному

 или неравномерному сгоранию топлива в двигателе.

 Для двигателя внутреннего сгорания (ДВС), чтобы получать необходимую механическую энергию для движения автомобиля, необходимо иметь высокое давление в цилиндрах. Естественно, чем выше температура сгорания топлива,

тем выше давление. Но окислы азота образуются тем охотней, чем выше температура и больше кислорода (то есть воздуха), поступающего в камеру сгорания. С точки зрения экологии в ДВС ситуация тупиковая. Много топлива и мало

воздуха - низкая мощность, экономичность и много СО. Мало топлива и много воздуха - много окислов азота. Успешный до недавней поры компромисс достигался электронным регулированием соотношения топливо-воздух и применением так называемого трехходового каталитического нейтрализатора. Такой нейтрализатор способен одновременно окислять СО и углеводороды, восстанавливать окислы азота. Эффективность такой очистки выхлопных газов достигает 95 %, но вся эта сложная схема не позволяет полностью избавиться от эмиссии СО и окислов азота.

 Перерабатывая токсичные вещества в выхлопе, конструкторы параллельно

улучшали рабочий процесс. Для борьбы с окислами азота снижали температуру горения рециркуляцией выхлопных газов (часть возвращают во впускной

коллектор), но пришлось снизить ее так, что двигатель стал с трудом прогреваться.

 Конечно, оптимальный состав горючей смеси на всех режимах работы ДВС поддерживать достаточно сложно, особенно при классическом принципе его организации.

 Результат оптимального процесса организации смесеобразования (топливоподачи) выглядит следующим образом: состав топливовоздушной смеси в районе зоны возгорания должен быть близок к стехиометрическому и не изменяться с изменением режима работы ДВС. В остальном объеме цилиндра должна

 находиться гомогенная горючая смесь, качественный состав которой зависит от режима работы ДВС и может изменяться в довольно широких пределах (режим холостого хода и минимальных нагрузок). Распределение остаточных

газов желательно в пристеночной зоне и в щелевых зазорах камеры сгорания, при попадании в которую горючая смесь не сгорает при любой своей концентрации.

 Получение подобного результата работы системы топливоподачи невозможно ни при карбюраторном питании (внешнее смесеобразование), ни при инжекторном питании, включая непосредственный впрыск (внутреннее смесеобразование). Вся сложность заключается именно в несовершенстве обеих классических процессов топливоподачи, которая усугубляется различными режимами работы ДВС.

 Но трудности преодолимы, если использовать другой способ работы двигателя. Если в двигателях с обычным способом работы объем воздуха или топливно-воздушной смеси, участвующего в процессе горения, регулируется количеством топлива, поступающего в камеру сгорания (для дизельных или бензиновых, с непосредственным впрыском) или регулируется снижением давления на впуске за счет изменения положения дроссельной заслонки (для бензиновых с внешним смесеобразованием, например карбюраторных), то в предлагаемом способе работы объем топливно-воздушной смеси и (или) воздуха в камере сгорания регулируется за счет изменения количества отработанных газов, оставшихся в камере сгорания. Получился рабочий процесс, когда бензин и чистый воздух находятся в соотношении 1:14,7, то есть оптимальным для сгорания (стехиометрическим) во всех режимах работы ДВС. В то же время смесь "

бедная", если учесть, что до 90 % объема (для режима холостого хода) могут занимать инертные отработавшие газы, попадающие в цилиндр без всякой рециркуляции.

 Изменять количество отработанных газов оставшихся в камере сгорания ДВС возможно различными способами:

 - изменением давления в системе отвода отработанных газов;

 - путем сдвига нных газов, оставшихся в камере сгорания. Получился рабочий процесс, когда бензин и чистый воздух находятся в соотношении 1:14,7, то есть оптимальным для сгорания (стехиометрическим) во всех режимах работы ДВС. В то же время смесь "

бедная", если учесть, что до 90 % объема (для режима холостого хода) могут занимать инертные отработавшие газы, попадающие в цилиндр без всякой рециркуляции.

 Изменять количество отработанных газов оставшихся в камере сгорания ДВС возможно различными способами:

 - изменением давления в системе отвода отработанных газов;

 - путем сдвига фаз открытия и закрытия выпускных клапанов, изменением времени и высоты их открытия.

 Осуществить предлагаемый способ возможно с помощью различных хорошо известных в технической литературе устройств изменения давления (УИД): мощностного клапана, дроссельной заслонки, различных типов нагнетателей

и резонаторов.

 Для снижения тепловых потерь, вызванных охлаждением отработанных газов, во впускном тракте дополнительно установлен обратный клапан, не позволяющий отработанным газам попасть во впускной тракт. Кроме того, это решение позволяет за счет уменьшения в зоне воспламенения в составе рабочей смеси или воздуха количества отработанных газов создать в районе зоны

возгорания состав топливовоздушной смеси, близкий к стехиометрическому (в момент возгорания), а значит, улучшить условия воспламенения рабочей

смеси.

 В качестве такого обратного клапана может быть использован хорошо известный в технике обратный клапан лепестковый типа.

 Рассмотрим работу предлагаемого ДВС на примере четырехтактного двигателя с одним УИД в системе отвода отработанных газов, обратным клапаном во впускном тракте и устройством подачи топливно-воздушной смеси, например карбюратором.

нных газов, оставшихся в камере сгорания. Получился рабочий процесс, когда бензин и чистый воздух находятся в соотношении 1:14,7, то есть оптимальным для сгорания (стехиометрическим) во всех режимах работы ДВС. В то же время смесь "

бедная", если учесть, что до 90 % объема (для режима холостого хода) могут занимать инертные отработавшие газы, попадающие в цилиндр без всякой рециркуляции.

 Изменять количество отработанных газов оставшихся в камере сгорания ДВС возможно различными способами:

 - изменением давления в системе отвода отработанных газов;

 - путем сдвига фаз открытия и закрытия выпускных клапанов, изменением времени и высоты их открытия.

 Осуществить предлагаемый способ возможно с помощью различных хорошо известных в технической литературе устройств изменения давления (УИД): мощностного клапана, дроссельной заслонки, различных типов нагнетателей

и резонаторов.

 Для снижения тепловых потерь, вызванных охлаждением отработанных газов, во впускном тракте дополнительно установлен обратный клапан, не позволяющий отработанным газам попасть во впускной тракт. Кроме того, это решение позволяет за счет уменьшения в зоне воспламенения в составе рабочей смеси или воздуха количества отработанных газов создать в районе зоны

возгорания состав топливовоздушной смеси, близкий к стехиометрическому (в момент возгорания), а значит, улучшить условия воспламенения рабочей

смеси.

 В качестве такого обратного клапана может быть использован хорошо известный в технике обратный клапан лепестковый типа.

 Рассмотрим работу предлагаемого ДВС на примере четырехтактного двигателя с одним УИД в системе отвода отработанных газов, обратным клапаном во впускном тракте и устройством подачи топливно-воздушной смеси, например карбюратором.

 

 

Эксплуатационные материалы

Автомобильные бензины. Оценка качества бензинов по фракционному составу. Антидетонационные свойства бензина. Октановое число бензина, методы его определения. Ассортимент бензинов и их маркировка в соответствии с действующими стандартами и техническими условиями.

фракционный состав (говорит об испаряемости бензина, что необходимо для определения его способности к образованию рабочей топливовоздушной смеси; характеризуется диапазонами температур выкипания (40—180(°)С) и давлений насыщенных паров (29—48 кПа))

Фракционный состав бензинов определяют перегонкой на специальном приборе, при этом отмечают температуру начала перегонки, температуру выпаривания 10, 50, 90 % и конца кипения, или объем выпаривания при 70, 100 и 180°С. Требования к фракционному составу и давлению насыщенных паров бензинов определяются конструкцией автомобильного двигателя и климатическими условиями его эксплуатации.

1. С одной стороны, необходимо обеспечить запуск двигателя при низких температурах, с другой стороны - предотвратить нарушения в работе двигателя, связанные с образованием паровых пробок при высоких температурах. Пусковые свойства бензина зависят от содержания в нем легких фракций, которое может быть определено по давлению насыщенных паров и температуре перегонки 10 % или объему легких фракций, выкипающих при температуре до 70°С. Чем ниже температура окружающего воздуха, тем больше легких фракций требуется для запуска двигателя. Однако чрезмерное содержание низкокипящих фракций в составе бензинов может вызвать неполадки в работе прогретого двигателя, связанные с образованием паровых пробок в системе топливоподачи.

2. 2. От фракционного состава зависят такие показатели как скорость прогрева двигателя, его приемистость, износ цилиндро-поршневой группы. Приемистость - способность бензинов к повышению детонационной стойкости при добавлении антидетонаторов. Наиболее существенное влияние на скорость прогрева двигателя и его приемистость оказывает температура перегонки 50 % бензина. Температура выкипания 90 % бензина также влияет на эти характеристики, но в меньшей степени.

3. 3. Для нормальной работы двигателя большое значение имеет полнота испарения топлива, которая характеризуется температурой перегонки 90 % бензина и температурой конца кипения. При неполном испарении бензина во впускной системе часть его может поступать в камеру сгорания в жидком виде, смывая масло со стенок цилиндров.

Различают два вида сгорания в двигателе: нормальное и аномальное. При нормальном сгорании устойчивое распространение пламени в цилиндре двигателя происходит со скоростью 20-60 м/с (в тестах 10-50 м/с). При аномальном сгорании (детонационном) скорость распространения пламени возрастает до 2000-2500 м/с. Причиной является образование неустойчивых перекисных соединений при окислении углеводородов топлива. Процесс разложения носит взрывчатый характер. Главная опасность связана с перегревом камеры сгорания и днища поршня. Разрушается смазочный слой на поверхности гильзы, увеличивается износ цилиндра и поршневых колец.

Калильное зажигание связано с тем, что при перегреве двигателя происходит самопроизвольное воспламенение рабочей смеси от горячих точек. Проявляется продолжением работы двигателя в виде кратковременного неустойчивого дёргания после выключения. Может вызвать пригорание и разрушение поршней, замасливание колец и даже поломку шатунов и обрыв коленчатого вала.

Детонационная стойкость бензина оценивается октановым числом. Октановое число равно процентному содержанию изооктана в эталонной смеси с гептаном, эквивалентного по детонационной стойкости этому бензину.

Октановое число определяется путём сравнительных испытаний данного бензина с эталонным топливом, октановое число которого известно на стандартной установке с одноцилиндровым двигателем с переменной степенью сжатия. Октановое число изооктана принято за 100, а гептана – за 0.

Испытания на детонационную стойкость проводят или на полноразмерном автомобильном двигателе, или на специальных установках с одноцилиндровым двигателем. На полноразмерных двигателях при стендовых испытаниях определяют т. н. фактическое октановое число (ФОЧ), а в дорожных условиях — дорожное октановое число (ДОЧ). На специальных установках с одноцилиндровым двигателем определение октанового числа принято проводить в двух режимах: более жёсткий (моторный метод) и менее жёсткий (исследовательский метод). Октановое число топлива, установленное исследовательским методом, как правило, несколько выше, чем октановое число, установленное моторным методом. Точность определения октанового числа, более правильно именуемая воспроизводимостью, составляет единицу. Это означает, что бензин с октановым числом 93 может показать на другой установке при соблюдении всех требований метода определения октанового числа совсем другую величину, например 92. Существенным является то, что обе величины, 93 и 92, являются и точными, и правильными и при этом относятся к одному и тому же образцу топлива

В зависимости от октанового числа автомобильные бензины подразделяют на следующие марки: А-72, А-76, А-80, АИ-91, АИ-93, АИ-92, АИ-95, АИ-96, АИ-98. Производятся они по разным ГОСТам и ТУ. Для первых трех марок цифры указывают октановые числа, определяемые по моторному методу, для последних - по исследовательскому (о чем свидетельствует буква "И" в маркировке бензина). Бензин А-72 практически не вырабатывается ввиду отсутствия техники, эксплуатируемой на нем. Наибольшая потребность существует в бензине АИ -92, хотя доля бензина А-76 в общем объеме производства остается очень высокой. Бензины А-80 и АИ-96 предназначены в основном для поставки на экспорт. Технические условия на бензины марок А-76, А-80, АИ-91, АИ-92 и АИ-96 допускают вырабатывать их с использованием этиловой жидкости. При производстве бензинов АИ-95 и АИ-98 использование алкилсвинцовых антидетонаторов не допускается.

Все бензины в зависимости от показателей испаряемости делят на летние и зимние. Зимние бензины предназначены для применения в северных и северо-восточных районах в течение всех сезонов и в остальных районах с 1 октября до 1 апреля.

 

2Дизельное топливо. Низкотемпературные свойства дизельного топлива: температура помутнения, температура застывания. Оценка качества дизельного топлива по фракционному составу: легкости запуска дизеля, полноте сгорания топлива. Самовоспламенение и сгорание дизельного топлива. Оценка самовоспламеняемости дизельного топлива по цетановому числу. Способы его повышения. Ассортимент дизельных топлив в соответствии с действующими стандартами.

Низкотемпературные свойства характеризуются такими показателями, как температура помутнения, предельная температура фильтруемости и температура застывания последняя определяет условия складского хранения топлива — условия применения топлива, хотя в практике известны случаи использования топлив при температурах, приближающихся к температуре застывания. Для большинства дизельных топлив разница между Tп и Tз составляет 5—7 °С. В том случае, если дизельное топливо не содержит депрессорных присадок, равна или на 1—2 °С ниже Tп. Для топлив, содержащих депрессорные присадки на 10 °С и более ниже Tп. [3]

В дизельных топливах содержится довольно много углеводородов с высокой температурой плавления. Для всех классов углеводородов справедлива закономерность: с ростом молекулярной массы, а следовательно, и температуры кипения повышается температура плавления углеводородов. Однако весьма сильное влияние на температуру плавления оказывает строение углеводорода. Углеводороды одинаковой молекулярной массы, но различного строения могут иметь значения температур плавления в широких пределах. Наиболее высокие температуры плавления имеют парафиновые углеводороды с длинной неразветвленной цепью углеводородных атомов. Ароматические и нафтеновые углеводороды плавятся при низких температурах (кроме бензола, п-ксилола), однако эти углеводороды, но с длинной неразветвленной боковой цепью, плавятся при более высоких температурах. По мере разветвления цепи парафинового углеводорода или боковой парафиновой цепи, присоединенной к ароматическим или нафтеновым кольцам, температура плавления углеводородов снижается.

Характер процесса горения топлива в двигателе определяется двумя основными показателями — фракционным составом и цетановым числом. На сгорание топлива более легкого фракционного состава расходуется меньше воздуха, при этом благодаря уменьшению времени, необходимого для образования топливовоздушной смеси, процессы смесеобразования протекают более полно.

 

Облегчение фракционного состава топлива, например при добавке к нему бензиновой фракции, может привести к жесткой работе двигателя, определяемой скоростью нарастания давления на 1° поворота коленчатого вала. Это объясняется тем, что к моменту самовоспламенения рабочей смеси в цилиндре двигателя накапливается большое количество паров топлива, и горение сопровождается чрезмерным повышением давления и стуками в двигателе.

Влияние фракционного состава топлива для двигателей различных

типов неодинаково. Двигатели с предкамерным и вихрекамерньм смесеобразованием вследствие наличия разогретых до высокой температуры стенок предкамеры и более благоприятных условий сгорания менее чувствительны к фракционному составу топлива, чем двигатели с непосредственным впрыском. Наддув двигателя, создающий повышенный термический режим камеры сгорания, обеспечивает возможность нормальной работы на топливах утяжеленного фракционного состава.

Время прокручивания двигателя при запуске его на топливе со средней температурой кипения 200—225 °С в 9 раз меньше, чем на топливе со средней температурой кипения, равной 285 °С

Цетановое число — основной показатель воспламеняемости дизельного топлива. Оно определяет запуск двигателя, жесткость рабочего процесса (скорость нарастания давления), расход топлива и дымность отработавших газов. Чем выше цетановое число топлива, тем ниже скорость нарастания давления и тем менее жестко работает двигатель. Однако с повышением цетанового числа топлива сверх оптимального, обеспечивающего работу двигателя с допустимой жесткостью (менее 0,5 МПа/°ПВК), ухудшается его экономичность в среднем на 0,2—0,3 % и дымность отработавших газов на единицу цетанового числа повышается на 1—1,5 единицы Хартриджа.

 

Чем выше цетановое число топлива, тем быстрее произойдут процессы предварительного окисления его в камере сгорания, тем скорее воспламенится смесь и запустится двигатель. Ниже приведены данные по влиянию цетанового числа на время запуска двигателя:

 

Цетановое число............. 53   38

 

Время запуска, с............. 3   45-50

 

 

 

Цетановое число топлив зависит от их углеводородного состава. Наиболее высокими цетановыми числами обладают нормальные парафиновые углеводороды, причем с повышением их молекулярной массы оно повышается, а по мере разветвления — снижается. Самые низкие цетановые числа у ароматических углеводородов, не имеющих боковых цепей; ароматические углеводороды с боковыми цепями имеют более высокие цетановые числа и тем больше, чем длиннее боковая парафиновая цепь. Непредельные углеводороды характеризуются более низкими цетановыми числами, чем соответствующие им по строению парафиновые углеводороды. Нафтеновые углеводороды обладают невысокими цетановыми числами, но большими, чем ароматические углеводороды. Чем выше температура кипения топлива, тем выше цетановое число, и эта зависимость носит почти линейный характер; лишь для отдельных фракций цетановое число может снижаться, что объясняется их углеводородным составом.

Нефтеперерабатывающей промышленностью вырабатывается дизельное топливо по ГОСТ 305—82 трех марок: Л — летнее, применяемое при температурах окружающего воздуха 0 °С и выше; 3 — зимнее, применяемое при температурах до -20 °С (в этом случае зимнее дизельное топливо должно иметь tз < -35 °С и tп < -25 °С), или зимнее, применяемое при температурах до -30 °С, тогда топливо должно иметь tз < -45 °С и tп < -35 °С), марки А — арктическое, температура применения которого до -50 °С. Содержание серы в дизельном топливе марок Л и 3 не превышает 0,2 % — для I вида топлива и 0,5 — для II вида топлива, а марки А — 0,4 %. Для удовлетворения потребности в дизельном топливе разрешаются по согласованию с потребителем выработка и применение топлива с температурой застывания 0 °С без нормирования температуры помутнения.

 

3Основные свойства газообразного топлива. Достоинства и недостатки их применения. Смазочные материалы, технические жидкости и моющие составы. Сжатые природные газы, их состав, свойства. Сжиженные нефтяные газы, их состав, марки, свойства.

1. Сжиженные нефтяные газы (СНГ).

2. Компримированные (сжатые) природные газы (КПГ).

3. Сжиженные природные газы (СПГ).

Сжиженные нефтяные газы при нормальных температурах (в диапазоне от –20 °C до +20 °C) и относительно небольших давлениях (1,0...2,0 МПа – 10...20 кгс/см2) находятся в жидком состоянии. Их основные компоненты – этан, пропан, бутан и весьма близкие к ним непредельные углеводороды – этилен, пропилен, бутилен и их изомер. Эти газы получаются при добыче и переработке нефти и поэтому их называют сжиженные нефтяные газы (СНГ). Комплект газового оборудования для СНГ вместе с баллоном весит от 40 до 60 кг и вполне подходит для установки на легковых автомобилях. Объем баллона обеспечивает пробег около 300 км, что вполне соизмеримо с расчетным пробегом 400 км для автомобиля, работающего на бензине.

Компримированные (сжатые) природные газы (КПГ) при нормальных температурах и любых высоких давлениях находятся в газообразном состоянии. К таким газам относятся метан, водород и др. Наибольший интерес для использования в качестве горючего на автомобильном транспорте представляет метан. Он является основной частью добываемых природных газов и составной частью биогаза, получаемого в результате брожения различных канализационных отходов.

Главным недостатком природного газа, как моторного топлива, является очень низкая объемная концентрация энергии. Если теплота сгорания одного литра жидкого топлива равна, примерно, 31 426, то у природного газа при нормальных условиях она равна 33,52–35,62 кДж, т. е. почти в 1000 раз меньше. По этой причине для использования газа в качестве моторного топлива на транспортном средстве его надо предварительно сжать до высоких давлений 20–25 МПа и более и заполнить им специальные баллоны.

Для хранения газа под таким давлением выпускаются баллоны из углеродистых и легированных сталей на давление 15–32 МПа. Каждый баллон в незаполненном состоянии весит более 100 кг. Использование их на легковом автомобиле не рационально, так как их вес соизмерим с возможной полезной нагрузкой.

В связи с этим их используют на грузовых автомобилях и автобусах.

Однако, несмотря на то, что применяемые в современной практике баллоны пока тяжелы, они полностью обеспечивают среднесуточный пробег автомобиля и могут применяться повторно при списании автомобиля. В некоторых отраслях техники, применяются армированные пластмассовые сосуды, которые легче стальных в 4–4,5 раза. В этом случае массовый показатель хранения КПГ, хотя и остается ниже, чем у бензина, но отличается от него на величину, малосущественную в практике. Но они очень дороги.

Сжиженные природные газы (СПГ) имеют такое же происхождение и состав, как и компримированные природные газы. Они получаются охлаждением метана до минус 162 °C. Хранятся в теплоизолированных емкостях.

Независимо от качества теплоизоляции газосодержащих емкостей (сосуды Дюара), температура в них повышается, а следовательно, этот способ содержания газового топлива может быть использован при интенсивной эксплуатации транспортного средства и его безгаражном хранении, так как периодически требуется сброс давления, т. е. выпуск порции газа.

При переводе автотранспорта на СПГ его низкую температуру возможно использовать для компенсации потерь мощности или кондиционирования воздуха в салоне автомобиля.

Переоборудование автомобиля для работы на СПГ заключается в установке специальной криогенной емкости, небольшого испарителя, использующего тепло выпускных газов, и монтаже газовой топливной аппаратуры, которая аналогична применяемой на газобаллонных автомобилях при работе на КПГ. Затраты на получение СПГ в 2–3 раза больше, чем на получение КПГ. Поэтому сжиженный природный газ целесообразно применять на автомобилях-рефрижераторах, где он может выполнять дополнительные функции хладагента для холодильников и кондиционеров.

преимущества:

– срок службы моторного масла увеличивается на 15–20 %;

– увеличивается межремонтный пробег двигателя;

– снижается токсичность выбросов до уровня стандартов Европейского Союза Евро 2 и даже Евро 3;

– значительно увеличивается срок службы нейтрализаторов выхлопных газов.

Моторные масла. Основные эксплуатационные свойства моторных масел: вязкостные, низкотемпературные, противоизносные, противоокислительные и диспергирующие, защитные и коррозионные. Классификация моторных масел по областям применения и вязкостным показателям. Маркировка моторных масел.

Вязкость является одной из важнейших характеристик смазочных масел, определяющих силу сопротивления масляной пленки разрыву. Чем прочнее масляная пленка на поверхности трения, тем лучше уплотнение колец в цилиндрах, меньше расход масла на угар. В соответствии с нормативнотехнической документацией вязкостно-температурные свойства моторных масел оцениваются индексом вязкости.

Вязкость динамическая - это сила сопротивления двух слоев смазочного материала площадью 1 см2, отстоящих друг от друга на расстоянии 1 см и перемещающихся один относительно другого со скоростью 1 см/с.

 

Вязкость кинематическая определяется как отношение динамической вязкости к плотности жидкости.

Индекс вязкости - относительная величина, показывающая степень изменения вязкости в зависимости от температуры. Индекс вязкости рассчитывают по значениям кинематической вязкости при 40 и 100 °С или находят по таблицам. Вязкостно-температурные свойства масел оценивают также по кинематической вязкости при низкой температуре (0 и -18 °С).

Кинематическая вязкость моторных масел, используемых в смазочных системах автомобильных двигателей, равна 4 … 14 мм2/с при 100°С. С понижением температуры она быстро увеличивается, достигая при -18 °С значения 10000 мм2/с и более. Масла с кинематической вязкостью 4 … 8 мм2/с используют в зимнее время, с вязкостью 10 … 14 мм2/с - летом.

Температура застывания - это предельная температура, при которой масло теряет подвижность. Масла, имеющие температуру застывания -15 °С и выше, относятся к летним. Если же температура застывания -20 °С и ниже, то масла относятся к зимним. Температура застывания в какой-то мере характеризует предельную температуру, при которой возможен запуск охлажденного двигателя. Однако, температура запуска двигателя на холоде зависят не столько от температуры застывания масла, сколько от величины его вязкости при данной температуре.

Противоизносные свойства характеризуют способность масла уменьшать интенсивность изнашивания трущихся деталей, снижать затраты энергии на преодоление трения. Эти свойства зависят от вязкости и вязкостно-температурной характеристики, смазывающей способности и чистоты масла. Моюще-диспергирующие свойства подразделяются на моющие и диспергирующие свойства. Моющие свойства характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя и противостоять лакообразованию на горячих поверхностях, а также препятствовать прилипанию углеродистых соединений. Диспергирующие свойства характеризуют способность масла препятствовать слипанию углеродистых частиц, удерживать их в состоянии устойчивой суспензии и разрушать крупные частицы продуктов окисления при их появлении.

Противоокислительные свойства определяют стабильность масла, от которой зависит срок работы масел в двигателях, характеризуют их способность сохранять первоначальные свойства и противостоять внешнему воздействию при нормальных температурах. Стойкость моторных масел к окислению повышается при введении антиокислительных присадок.

Антикоррозионные свойства. Коррозионная активность моторных масел зависит, прежде всего, от содержания в них сернистых соединений, органических и неорганических кислот и других продуктов окисления. В лабораторных условиях антикоррозионные свойства моторных масел оценивают по потере массы свинцовых пластин (в расчете на 1 м2 их поверхности) за время испытания при температуре 140 °С.

Коррозионный износ деталей определяется также исходным значением щелочности и скоростью ее изменения. Чем больше проработало масло, тем ниже становится показатель щелочности. Поэтому показатель щелочности вводится в число показателей качества масла. Зольность масла позволяет судить о количестве несгораемых примесей в маслах без присадки, а в маслах с присадками - о количестве введенных зольных присадок. Зольность определяют в лабораторных условиях и выражают процентным отношением образовавшейся золы к массе пробы масла, взятой для анализа. Зольность масел, не содержащих присадок, не превышает 0,02 … 0,025 % по массе. У масел с присадками зольность не должна быть менее 0,4 %, а у высококачественных марок масел не менее 1,15 … 1,65 % по массе.

Содержание механических примесей и воды. Механических примесей в маслах без присадок не должно быть, а в маслах с присадками их значение не должно превышать 0,015 % по массе, причем механические примеси не должны оказывать абразивного действия на трущиеся поверхности. Вода в моторных маслах должна отсутствовать. Даже небольшое количество воды вызывает деструкцию присадок, происходит процесс шламообразования.

Присадки применяются для придания моторным маслам новых свойств или изменения существующих. Присадки подразделяют: на антиокислительные - повышают антиокислительную устойчивость масел; противокоррозионные - защищают металлические поверхности от коррозионного воздействия кислото- и серосодержащих продуктов; моюще-диспергирующие - способствуют снижению отложений продуктов окисления на металлических поверхностях; противоизносные, противозадирные и антифрикционные - улучшают смазочные свойства масел; депрессорные - понижают температуру застывания масел; антипенные - предотвращают вспенивание масел.










Последнее изменение этой страницы: 2018-05-30; просмотров: 264.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...