Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Построение предполагаемого процесса паровой турбины     в h, s-диаграмме




 

Для определения расхода пара на турбину (мощности цилиндра) и определения числа ступеней необходимо построить предполагаемый тепловой процесс турбины (цилиндра).

2.1. По заданным величинам ,  по таблицам свойств водяного пара определяют   и . Располагаемый (изоэнтропийный) теплоперепад турбины при расширении до давления определяется по формуле

                                   .                      (2.1)

2.2. Вследствие потерь в стопорном и в регулирующих клапанах, а также потерь в выхлопном патрубке, располагаемый теплоперепад проточной части будет меньше располагаемого теплоперепада турбины. Приняв потери давления в клапанах 5%, давление пара перед соплами регулирующей ступени  определится по уравнению

                                  .                                                    (2.2)

Потери давления в выхлопном патрубке приводят к тому, что давление за последней ступенью  будет выше заданного давления за турбиной. Давление пара на выходе из последней ступени   рекомендуется определять по уравнению

                                                              (2.3) где  - коэффициент потерь в патрубке, который зависит от конструкции выхлопного патрубка; для цилиндров высокого давления и для противодавленческих турбин =0,1; - скорость пара в выхлопном патрубке (принимается 50 – 80 м/с).

 

 

 

 


С учетом указанных потерь, располагаемый теплоперепад ступеней:              

                        .                                 (2.4)

2.3. При изоэнтропийном процессе расширения в турбине энтальпия пара при давлении, равном давлению на выходе из турбины (в точке Kt) и энтальпия пара при давлении, равном давлению за последней ступенью (в точке t), определятся соответственно:

 

,                                           (2.5)

                                                 .                                            (2.6)

2.4. Использованный теплоперепад паровой турбины и расход пара через нее в первом приближении можно определить по уравнениям:

                                                    ,                                             (2.7)  

                                                  ,                                           (2.8)

где  - относительный внутренний КПД турбины, при ориентировочных расчетах может быть принят 0,78 – 0,84; - механический КПД, учитывающий механические потери в турбине, прежде всего потери на трение в подшипниках, = 0,98 – 0,99; - КПД электрического генератора, может быть принят 0,97 – 0,985.

Эффективная мощность цилиндра (мощность на муфте) определится из уравнения

                                           .                                      (2.9)

2.5. При сопловом парораспределении, преимущественно используемом в конденсационных турбинах ТЭС и практически всегда в теплофикационных турбинах и турбинах с противодавлением, первая ступень, работающая с переменной степенью парциальности, носит название регулирующей. Для построения предполагаемого процесса необходимо определить или выбрать теплоперепад регулирующей ступени.

С целью снижения стоимости турбины, а также по условиям экономичной работы турбины с сопловым парораспределением при переменных режимах, в регулирующей ступени целесообразно срабатывать повышенный тепловой перепад. Повышенный тепловой перепад регулирующей ступени обеспечивает уменьшение количества нерегулируемых ступеней, температуры и давления пара в камере регулирующей ступени и, следовательно, снижает стоимость турбины за счет уменьшения габаритов, металлоемкости, использования относительно дешевых низколегированных сталей для ротора и корпуса. Кроме того, с уменьшением давления в камере регулирующей ступени снижаются утечки пара через передние концевые уплотнения. 

Регулирующие ступени выполняются как одновенечными, так и двухвенечными. Одновенечные ступени применяют для срабатывания тепловых теплоперепадов 80 – 120 кДж/кг, двухвенечные – для срабатывания теплоперепадов 100 – 250 кДж/кг. В современных мощных турбинах в качестве регулирующей ступени применяют одновенечную ступень, так как преимущество повышенного теплоперепада технико-экономическими расчетами не оправдывается, а экономичность одновенечной ступени выше экономичности двухвенечной. 

Оптимальный располагаемый теплоперепад турбинной ступени, при котором обеспечивается наивысшая экономичность, достигается при оптимальном значении , где - окружная скорость в расчетном сечении, м/с; - фиктивная (условная) скорость, м/с, определяемая из соотношения

                                ,                                   (2.10) где - располагаемый теплоперепад на ступень (кДж/кг), подсчитанный от параметров торможения. Тогда

                            .                                        (2.11)

Оптимальное значение зависит от типа ступени, степени реактивности, потерь в лопатках и так далее. В первом приближении можно принять для активной (степень реактивности  0,1) одновенечной ступени = 0,45 – 0,48, для активной двухвенечной = 0,24 – 0,26.

Окружная скорость зависит от диаметра ступени и частоты вращения

                                     ,                                             (2.12)

где  - диаметр ступени (м); - частота вращения в секунду.

Диаметр ступени определяется корневым диаметром диска и высотой лопатки. В части высокого давления высота лопаток обычно не превышает 100 мм, и диаметр ступени определяется технологическими возможностями изготовления цельнокованого ротора и напряжениями в диске. Предельные диаметры поковки ротора не превышают 1,2 м. Поэтому, с учетом припусков на обработку ротора, средний диаметр регулирующей ступени не может превышать 1,1 – 1,2 м. С целью унификации роторов обычно принимается средний диаметр регулирующей одновенечной ступени  = 1,1 м, двухвенечной - =0,95 м.

Подставив в формулы (2.10), (2.11) и (2.12) принятые значения , , , можно определить оптимальный располагаемый теплоперепад регулирующей ступени выбранного типа. Срабатываемый располагаемый теплоперепад  может быть принят равным или несколько превышающим :

                               £ £ 1,3 .                                            (2.13)

Следует также иметь в виду, что скоростью входа в сопловой аппарат можно пренебречь и тогда = .

2.6. Использованный теплоперепад регулирующей ступени в первом приближении можно определить, задавшись КПД ступени. Для одновенечной ступени можно принять = 0,78 – 0,82, для двухвенечной - = 0,72 – 0,76:

                              

                                           .                                       (2.14)

2.7. Давление пара в конце процесса расширения в регулирующей ступени определится как

                 .                       (2.15)

 

2.8. Энтальпия пара за регулирующей ступенью определяется по уравнению

                                                   ,                                       (2.16) а удельный объем:

                              .                  (2.17)

2.9. Располагаемый теплоперепад на нерегулируемых ступенях определяется уравнением

                               .                    (2.18)

2.10. Использованный теплоперепад нерегулируемых ступеней можно определить, задавшись КПД отсека этих ступеней. Для расчетов в первом приближении допустимо принять = 0,86 – 0,90:

                              .                                          (2.19)

2.11. Энтальпия пара за турбиной определяется по уравнению

                                                   ,                                    (2.20) а удельный объем за рабочими лопатками последней ступени:

 

                              .                 (2.21)

 

2.12. Определив все значения теплоперепадов, энтальпий, давлений и удельных объемов, можно построить предполагаемый тепловой процесс турбины в тепловой диаграмме (рис. 2.1).

 










Последнее изменение этой страницы: 2018-05-29; просмотров: 277.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...