Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Аксиоматическое определение вероятности. ⇐ ПредыдущаяСтр 3 из 3
Необходимость формально логического обоснования теории вероятностей, её аксиоматического построения возникла в связи с развитием самой теории вероятностей как математической науки и её приложений в различных областях. Впервые идея аксиоматического построения вероятностей была высказана российским академиком Бернштейном (Бернштейн Сергей Натанович 1880-1968), исходившим из качественного сравнения событий по их большей или меньшей вероятности. В начале 30-х годов прошлого столетия академик Колмогоров (Колмогоров Андрей Николаевич 1903-1987) разработал иной подход, связывающий теорию вероятностей с современной метрической теорией функций и теорией множеств. Приведём систему аксиом, предложенную Колмогоровым. Аксиоматическое определение. Вероятностью события А называется число Р(А), которое сопоставляется каждому событию рассматриваемого множества событий и которое удовлетворяет следующим аксиомам: Аксиома 1: (неотрицательности) Вероятность любого события неотрицательна. Аксиома 2: (нормировки) Вероятность достоверного события равна 1. Аксиома 3: (сложения) Вероятность суммы любого конечного множества попарно несовместных событий равна сумме их вероятностей. Аксиома 4: (однозначности) Эквивалентные события имеют равные вероятности. Следствия из аксиом: 1. Вероятность невозможного события равна 0. 2. Вероятность события противоположного событию А 3. Вероятность любого события Аксиомы теории вероятностей позволяют вычислить вероятности любых событий через вероятности элементарных событий. Вопрос о том, откуда берутся вероятности элементарных событий, при аксиоматическом построении теории вероятностей не рассматривается. На практике они определяются с помощью классического, статистического, геометрического определений. Таким образом, аксиоматическое определение: · Обобщает классическое, статистическое, геометрическое определения. · Постулирует существование вероятности как объективно существующей характеристики реальных событий, не зависящей ни от самого исследователя, ни от количества проведённых им экспериментов.
Теоремы сложения и умножения вероятностей.
Как правило, для определения вероятностей событий применяются не непосредственные прямые методы, а косвенные, позволяющие по известным вероятностям одних событий определять вероятности других событий, с ними связанных. Применяя косвенные методы, мы всегда в той или иной форме пользуемся основными теоремами теории вероятностей – теоремами сложения и умножения вероятностей. Эти теоремы могут быть доказаны только для событий, сводящихся к схеме случаев. Для остальных событий они принимаются аксиоматически.
|
||
Последнее изменение этой страницы: 2018-05-29; просмотров: 191. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |