Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные понятия, термины, определения




Наличие определенной температуры плавления - важный признак кристаллического строения тел. По этому признаку их легко отли­чить от аморфных твердых тел, не имеющих фиксированной темпе­ратуры плавления


Структура твердого тела и температура плавления

Напомним, что структура есть результат совокупного действия химических связей, обеспечивающих единое целое. Поэтому проч­ность структуры твердого тела зависит от прочности химических связей, так же, как прочность здания зависит от того, из каких кир­пичиков оно построено и каким раствором связаны эти кирпичики.

У различных групп веществ и соединений для создания опти­мальной структуры имеются определенные условия и особенности. Так, для класса оксидов металлов одной и той же группы или с оди­наковой валентностью металла можно отметить следующие особен­ности:

- температура плавления оксида тем выше, чем выше координа­ционное число (к.ч.) катиона;

- температура плавления оксида снижается по мере уменьшения к.ч. металла по отношению к кислороду;

- температура плавления оксида снижается при уменьшении к.ч. кислорода при неизменном к.ч. ионов металла, равном 6 (пример: к.ч. MgO (2800°С) > к.ч. А12О3(2050°С) > к.ч. ТiO2

- температура плавления оксида тем выше, чем выше плотность
упаковки ионов (т.е. выше к.ч. ионов) и выше прочность химической
связи.

Взаимосвязь "температура плавления - тепловое расширение "

Анализ механизмов теплового расширения и плавления, а также влияния на них состава, химических связей и структуры тела выяв

С увеличением прочности химической связи КТР тел уменьша­ется (см. табл. 4.3), а их температура плавления растет (см. табл.4.8). Эта взаимосвязь свидетельствует о том, что температура плавления может служить косвенной характеристикой процесса теплового расширения кристаллических тел.

Взаимосвязь "температура плавления - тепловое расширение "

Анализ механизмов теплового расширения и плавления, а также влияния на них состава, химических связей и структуры тела выяв

С увеличением прочности химической связи КТР тел уменьша­ется (см. табл. 4.3), а их температура плавления растет (см. табл.4.8). Эта взаимосвязь свидетельствует о том, что температура плавления может служить косвенной характеристикой процесса теплового расширения кристаллических тел.




ДЕФОРМАТИВНЫЕ И ПРОЧНОСТНЫЕ СВОЙСТВА МАТЕРИАЛОВ

Деформативные свойства

Основные понятия, термины, определения

Деформативные свойства материалов проявляются при воздействии на них механических и термических нагрузок, в результате которых в материале возникают различного рода деформации, напряженное состояние и, наконец, наступает разрушение.

Деформация — это нарушение взаимного расположения множества частиц материальной среды, которое приводит к изменению формы и размеров тела и вызывает изменение сил взаимодействия между частицами, т.е. возникновение напряжений. Заметим, что чаще деформации вызывают напряжения, и поэтому, как правило, строят графики зависимости напряжений от деформаций, а не наоборот.

Упругость

Упругость — свойство изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внешних воздействий.

Упругость тел обусловлена силами взаимодействия атомов, из которых они построены. В твердых телах при температуре абсолютного нуля и отсутствии внешних воздействий атомы занимают равновесное положение, в котором сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна.

Под влиянием внешних воздействий атомы смещаются относительно своих равновесных положений, что сопровождается увеличением потенциальной энергии тела на величину, равную работе внешних сил на изменение формы и объема тела. В результате возникают напряжения, величины которых пропорциональны произведенной деформации.

Пока отклонения межатомных расстояний и валентных углов от их равновесных значений малы, они пропорциональны силам межатомного взаимодействия, подобно тому, как удлинение или сжатие пружины пропорционально приложенной силе. Поэтому упругое тело можно представить как совокупность атомов-шариков, соединенных пружинами, ориентации которых фиксированы другими пружинами (рис. 5.1), а константы упругости пружин модели подобны модулю упругости материала.


Рис. 5.1. Шариковая модель элементарной ячейки кубического кристалла:

а - в равновесии при отсутствии внешних сил;

б - под действием внешних сил и касательных напряжений

 

Поле снятия нагрузки конфигурация упругого деформированного тела с неравновесными межатомными расстояниями и валентными углами оказывается неустойчивой и самопроизвольно возвращается в равновесное состояние. Запасенная в теле избыточная потенциальная энергия превращается в кинетическую энергию колеблющихся атомов, т.е. в теплоту.

Константы упругости

Количественно упругость характеризуется константами, свойственными каждому материалу. При этом необходимо учитывать, что большинство свойств, кроме плотности и теплоемкости, связано с анизотропией структуры. Упругость является ярко выраженным анизотропным свойством. Поэтому следует различать упругость кристаллов и анизотпропных материалов и упругость изотропных тел.

Поликристаллические тела и материалы в целом изотропны, анизотропия их свойств проявляется только в результате формования или обработки, например прессования, штампования, прокатки, уплотнения и т.п. Таким образом, формируется анизотропия свойств керамической плитки, черепицы, стального листа и т.д. В дальнейшем рассматривается упругость только изотропных свойств, для которых не применимы представления об ориентированных кристаллографических осях и пр.

С учетом вышеизложенного для большинства природных и искусственных материалов (горные породы, керамика, бетон, металлы и т.д.) при малых деформациях зависимости между напряжениями «σ» и деформациями «ε» можно считать линейными (рис. 5.2) и описывать обобщенным законом Гука:

σ = Еε,

где Е — модуль упругости (модуль Юнга).

Подобным образом напряжение сдвига «τ» прямо пропорционально относительной деформации сдвига или углу сдвига у(рис. 5.3):

τ = G . у

где G — модуль сдвига.


Рис. 5.2. Классическая зависимость напряжение — деформация:

А — керамики; В — металлов; С — полимеров

Рис. 5.3. Упругая деформация твердого тела при сдвиге

 

Удлинение образца при растяжении сопровождается уменьшением его толщины (рис. 5.4). Относительное изменение толщины Δl/l к относительному изменению длины Δd/d называется коэффициентом Пуассона «μ» или коэффициентом поперечного сжатия:

μ = (Δl/l) / (Δd/d).

Рис. 5.4. Упругая деформация твердого тела при растяжении

 

Если при деформации тела его объем не изменяется, а это может иметь место только при пластическом или вязком течении, то μ = 0,5. Однако, практически, эта величина значительно ниже теоретического показателя и для разных материалов она различна. Упругие материалы (бетон, керамика и др.) имеют невысокие значения коэффициента Пуассона (0,15-0,25), пластичные (полимерные материалы) — более высокие (0,3-0,4). Это объясняется зависимостью между силами притяжения и отталкивания и изменением межатомного расстояния при деформации.

Модуль Юнга

Модуль Юнга, или модуль продольной деформации Е показывает критическое напряжение, которое может иметь структура материала при максимальной ее деформации до разрушения; имеет размерность напряжений (МПа).

Е =σр/ε;

Где: σр – критическое напряжение.

У поликристаллических материалов обычно наблюдаются отклонение от линейной σ = ƒ(ε,), несвязанное с энергией кристаллической решетки, а зависящей от структуры материала. Для оценки упругих свойств таких материалов применяют два модуля упругости: касательный Е = tgα и секущий V= tgβ, который называют модулем деформаций (рис. 5.5).


Рис. 5.5. Схематическое изображение деформации огнеупоров:

а — кривая деформации; б — точка разрушения;

σ; — предельное напряжение при разрушении; ε — деформация

 

Величина модуля упругости двухфазной системы является средней между величинами модулей упругости каждой из фаз, и аналитическое выражения для ее нахождения аналогичны тем, что используются при различных значениях линейного КТР:

Е = Е1V1 + E2V2,

где V1 и V2 — относительные объемные доли первой и второй фаз.

Это соотношение используется при разработке стеклопластиков, т.е. пластмасс, армированных стекловолокном. Е стекловолокна (~7.104 МПа) велик по сравнению с Е пластмасс (Е = 0,7.104 МПа). Поэтому даже при низкой объемной доле стекловолокна в композиции на него как на более прочный компонент приходится большая часть общей нагрузки.

Пористость и модуль Юнга

Увеличение пористости структуры снижает ее модуль упругости, так как пористость представляет собой вторую или п-ю фазу с минимальным модулем упругости. Количественно эта зависимость представляется достаточно сложной, так как кроме суммарного объема пор необходимо учитывать их форму, непрерывность, извилистость и пр. Если принять, коэффициент Пуассона μ равным 0,3, то величина модуля упругости пористого тела в случае наличия замкнутых пор в непрерывной среде достаточно точно может быть определена по следующему эмпирическому уравнению:

Е = Ео (1-1,9П+0,9П2),

где Е и Ео — модули упругости пористого и абсолютно плотного тела;

П — относительная пористость, ед.

Если в пористых материалах пространство пор непрерывно, а твердые частицы могут смещаться относительно друг друга, то влияние пористости оказывается более значительным, чем в результате определения по приведенному уравнению.

 Термическое расширение и модуль упругости

Кристаллические тела с высоким КТР имеют, как правило, низкий модуль упругости. С повышением температуры расстояние между атомами увеличивается также за счет термического расширения, и упругая составляющая деформации несколько снижается, уменьшая напряженное состояние и, как следствие, модуль упругости. При высоких температурах упругая составляющая понижается значительно. Наконец, она становится настолько малой, что тело теряет свои упругие свойства, т.е. переходит из состояния неустойчивого равновесия в равновесное состояние, в котором величина напряжения и силы межатомного взаимодействия зависят только от температуры.

В материаловедении такое состояние, называемое пиропластическим, и является необходимым условием для формования (ковка, црокат, горячее прессование, термопластичное формование и пр.) различных материалов и изделий.

 

Пластичность

Пластичность (от греч. р1аstcos — податливый) — свойство твердых тел и материалов деформироваться (изменять свою форму и размеры) без нарушения сплошности структуры под действием внешних сил и сохранять часть деформации после прекращения действия этих сил. Такие сохраненные (необратимые или остаточные) деформации часто называют пластическими.

Все реальные твердые тела, даже при малых деформациях, в большей или меньшей степени обладают пластическими свойствами, т.е. наряду с упругими деформациями также имеют место пластические. Соотношения между двумя противоположными видами деформации для различных материалов неодинаковы. В керамике это соотношение в пользу упругой деформации, в полимерах — в пользу пластической. По этому показателю условный ряд материалов с повышением доли пластической деформации может быть представлен следующим образом:

керамика → метал → высокомолекулярные соёдинения.

Это соотношение зависит от многих факторов, в том числе от структуры твердого тела. Например, в отформованном глиняном сырце доля упругой деформации невелика по сравнению с пластической. В высушенном глиняном образце доля пластической деформации значительно уменьшилась, а в спеченной керамике эта доля ничтожна. Это объясняется так: под влиянием температурных воздействий структура глиняного сырца претерпела кардинальные изменения: высокодисперсная коллоидная система превратилась в пористую стеклокристаллическую структуру с высоким модулем упругости.

Заметим, что при нагружении любое твердое тело можно считать упругим, т.е. не проявляющим заметных пластических деформаций, до тех пор, пока нагрузка не превысит некоторого предела, после которого часть деформаций становится необратимой. Напряженное состояние этого момента называется пределом текучести σт. После этого предела линейный характер взаимосвязи напряжение — деформация нарушается, в дальнейшем он может восстановиться, но в другом соотношении σ/ε. При пластической деформации, сопровождающейся нарушением связности структуры, наступает разрушение, характеризующееся резким падением напряжения Пограничное состояние между пластической деформацией и разрушением называется предельным напряжением структуры σпр, которое численно равно пределу прочности Rпр твердого тела.

Из графика (рис. 5.6) следует, что при повышении нагрузки до предела текучести σт проявляются только упругие деформации, и напряжение возрастает с большой скоростью. После достижения σпр проявляются только пластические деформации, хотя в обоих случаях имеют место и те, и другие. В этот период напряжение возрастает медленно и только за счет наличия упругих деформаций, вплоть до нарушения сплошности структуры, Rпр.

Таким образом, становится очевидным, что появление пластических деформаций свидетельствует о начале процесса разрушения структуры твердого тела. Этот факт следует учитывать при расчете или выборе конструкций различного функционального назначения, разработке способов подготовки масс, формования, других технологических переделов.


Рис.5.6. Кривые зависимости напряжение – деформация:

______ упругая деформация;

----------пластическая деформация.

Рис. 5.7. Зависимость упругой и пластической деформаций от времени приложения нагрузки

 

На рис. 5.7 изображен график временной зависимости деформации при постоянном напряжении и температуре.

В момент нагружения, которое осуществляется со скоростью звука, в твердой непрерывной среде возникает только упругая деформация 4 (отрезок ОА). С течением времени в твердом теле развивается необратимая деформация. Совокупное развитие обратимой и необратимой деформаций во времени характеризуется отрезком АВ. В момент времени τi, соответствующий т. В, обратимая деформация достигает равновесного значения при действующем напряжении и больше не увеличивается. Если бы наблюдаемая деформация была обусловлена только обратимой (упругой) составляющей деформации, то в дальнейшем она не изменялась бы во времени, и отрезок ВС располагался бы параллельно оси времени. В действительности деформация непрерывно увеличивается, но уже за счет необратимой составляющей, и отрезок ВС характеризует ее изменение во времени.

Если участок ВС прямолинеен, то, экстраполируя его к нулевому моменту времени, получаем графическое выражение закона пластической деформации в виде прямой ВС. Пластическая деформация (отрезок ДЕ), накопившаяся за время τ2 остается после снятия нагрузки, когда со временем гз исчезает упругая составляющая (кривая СД).

Резюмируя сказанное, отметим следующее:

- в момент нагружения (мгновенно) имеет место только упругая деформация (ОА);

- в период достижения упругой деформацией равновесного значения (АВ) имеет место как упругая, так и пластическая деформация,

- в период роста пластической деформации упругая составляющая остается неизменной (ВС);

- после снятия нагрузки исчезает упругая деформация (СД);

- (ДЕ) - пластическая деформация.

Разделение упругой и пластической деформаций, улучшение пластических свойств материала — достаточно сложные, но подчас необходимые операции при создании новых технологий переработки, обработки, формования различных материалов и получении материалов с заданными свойствами.










Последнее изменение этой страницы: 2018-05-10; просмотров: 197.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...