Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные понятия, термины определения




Теплоемкость является мерой энергии, необходимой для повышения температуры материала. Эта энергия затрачивается на:

- увеличение энергии колебательного движения атомов относительно их равновесного положения в узлах решетки;

- повышение энергетического состояния некоторых электронов в решетке;

- изменение положения атомов (при образовании дефектов структуры или при перестройке структуры).

Теплоемкость вещества С — один из важнейших термодинамических параметров, значение которого используют для определения энтропии, энтальпии, энергии Гиббса и других величин. Например, согласно третьему началу термодинамики определение абсолютного значения энтропии S основано на измерении температурной зависимости теплоемкости в области низких температур и применении уравнения:

С = Т (dS/dТ),

где Т — абсолютная температура.

В термодинамической системе теплоемкость схематически расположена на отрезке прямой между термодинамическими потенциалами Т и S.

Величина С характеризуется отношением количества теплоты сообщенного телу (системе) в каком-либо процессе, к соответствующему изменению его температуры dТ:

С = Q/dT.

Отношение теплоемкости к массе тела m называют удельной теплоемкостью сm, а отношение теплоемкости к количеству вещества M в молях называют молярной теплоемкостью — сM:

сm = С/m [Дж/кг.К] или [ккал/кгС] — удельная теплоемкость;

см = С/М [Дж/моль.К] или [ккал/мольС] - молярная теплоемкость.

Теплоемкость зависит не только от начального и конечного состояний, но и от способа, которым был осуществлен переход между ними.

Обычно различают теплоемкость при постоянном давлении Сp (изобарический процесс) и при постоянном объеме Сv (изохорический процесс).

Тепловое расширение

Основные понятия, термины, определения

Тепловое расширение — это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.

С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения β:

β = (1/ V)(dV/dТ)p,

где: V — объем тела (твердого, жидкого или газообразного);

Т — его абсолютная температура.

Практически значение β определяется по формуле:

β = (V1 –V2)/V1(T2-T1);

где: Т1 и Т2 — температуры соответственно до и после нагревания;

V1 и V2 — объемы тела соответственно при Т1 и Т2.

Механизм теплового расширения твердых тел

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.

Связь “тип химической связи — тепловое расширение”

Материалы с очень прочными химическими связями, такие, как алмаз, карбид кремния и другие соединения с ковалентной связью, имеют низкие коэффициенты термического расширения — КТР, поскольку при увеличении потенциальной энергии тел с ковалентной связью ее симметричность практически не нарушается и равновесное межатомное расстояние изменяется незначительно.

В соединениях с ионной связью, например МgО, NаСI и др., при повышении температуры потенциальную энергию определяет главным образом сила притяжения. В результате кривая межатомного потенциала становится асимметричной и увеличение межатомного расстояния, т.е. расширение, становится значительным.

КТР металлов из-за слабости химической связи обычно достаточно высок.

Высокомолекулярные соединения со слабыми ван-дер-ваальсовыми связями имеют очень высокий КТР (табл. 4.2.).

Таблица 4.2. Химические связи и тепловое расширение

 

№ п/п Тип материала Тип хим. связи Вещество KTPxl0-6C-1, при 25°С
1 Прир. мине­рал

Ковалент-ная

Алмаз -0,9
2

Керамика

 

Кордиерит 1,7
3     Муллит -5,0
4     Карбид кремния 5,6
5 Оксид

Ионная

Периклаз 13,5
6 Соль   Хлористый натрий 40
7

Металлы

Металли­ческая

Железо 11,6
8     Свинец 29,3
9     Цинк 39,7
10

Полимеры

Ван-дер-ваальсовая

Полиметил-метакрилат 50
11     Сложный полиэфир 55...100
12     Полиэтилен 120

Из таблицы видно, что КТР находится в прямой зависимости от прочности химической связи.










Последнее изменение этой страницы: 2018-05-10; просмотров: 166.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...