Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Структурные и функциональные гены. Контроль экспрессии генов.




Генотип –совокупность всех генов микроорганизма, которые подразделяют на следующие группы:

1. Структурные гены - они обуславливают синтез структурных белков и ферментов.

2. Гены–регуляторы - определяют синтез, например белков-репрессоров, изменяющих деятельность структурных генов.

3. Гены-промоторы - это участок ДНК распознаваемый ДНК-зависимой РНК-полимеразой, необходимый для начала транскрипции.

4. Гены-операторы - посредники, располагаются между промотором и структурными генами.

Оперон образуют ген-регулятор, промотор, оператор и структурные гены. Оперон является функциональной генетической единицей, осуществляющий экспрессию одного или группы генов.

Контроль экспрессии генов (лактозный оперон).

Лактозный оперон состоит из трех линейно расположенных структурных генов, деятельность которых контролируется геном-регулятором.

Структурные гены детерминируют образование трех катаболических ферментов: бета-галактозидазы, трансацетилазы и пермеазы. Работа структурных генов зависит от гена-регулятора и наличия в среде лактозы. Ген-регулятор контролирует образование белка-репрессора. Белок-репрессор при отсутствии лактозы  связывается с оператором и блокирует транскрипцию. Поступая в клетку, лактоза связывается с белком-репрессором, в результате освобождается оператор и включается синтез катаболических ферментов на структурных генах.

После полной утилизации лактозы белок-репрессор освобождается и вновь связывается с оператором, блокирует процесс синтеза ферментов.

Мутации. Классификация. Мутагены выявление мутантов.

Мутации - это изменения в первичной структуре ДНК, которые выражаются в наследственно закрепленной утрате или изменении какого-либо признака.

КЛАССИФИКАЦИЯ МУТАЦИЙ

По характеру изменения генотипа

§ Генные (точечные)

§ Хромосомные

По характеру изменения фенотипа

§ Летальные

§ Морфологические

§ Физиологические

§ Биохимические

По происхождению

§ Спонтанные

§ Индуцированные

По локализации в клетке

§ Ядерные

§ Цитоплазматические (мутации внеядерных генов)

По фенотипическим последствиям

§ Прямые

§ Обратные

Мутагены:

Определение Химические вещества или физические факторы, вызывающие предмутационные изменения в ДНК, которые в результате ошибок в работе репарирующих ферментов или в процессе репарации переходят в мутацию
Классификация по механизму действия 1. Аналоги азотистых оснований Þ замена пар оснований 2. Акридиновые красители Þ выпадения или вставки оснований 3. УФ, некоторые продукты микробного метаболизма Þ нарушение работы ДНК-полимеразы Þ образование тиминовых димеров 4. Нитрозосоединения Þ множественный эффект («супермутагены»)

Мутантные штаммы бактерий используются:

1) для получения продуктов биосинтеза бактерий-антибиотиков, аминокислот, ферментов и др.;

2) для получения вакцин;

3) для индикации мутагенности веществ.

►Ауксотрофные мутанты выявляют на минимальном агаре по методу реплик (см. протокол)

Генетические рекомбинации у бактерий. Механизмы и значение. Трансформация. Трансдукция.

Определение рекомбинационной изменчивости у бактерий – изменчивость, происходящая в результате включения в ДНК реципиентной клетки участка ДНК донорской клетки.

Трансдукция - перенос генетического материала от клетки-донора к клетке-реципиенту с помощью умеренного бактериофага. Фаг переносит небольшой фрагмент ДНК бактерии-донора. В результате трансдукции бактерия-реципиент приобретает новые фенотипические признаки: ферментативные свойства, устойчивость к антибиотикам, вредным воздействиям окружающей среды, вирулентность и др. При выходе бактериофага из клетки, фрагмент донорской трансдуцированной ДНК остается в хромосоме клетки-реципиента, а, следовательно, сохраняются и новые фенотипические признаки. Бактериофаг при трансдукции выполняет только транспортную функцию.

Типы трансдукций

1. Неспецифическая трансдукция.В процессе репродукции фага в момент сборки фаговых частиц в их головку вместе с фаговой ДНК может проникнуть какой-либо фрагмент ДНК бактерии-донора. В клетки реципиентного штамма могут быть перенесены любые гены донора. Фаги являются только переносчиком генетического материала от одних бактерий к другим. Фаговая ДНК не участвует в образовании рекомбинантов.

2. Специфическая трансдукция осуществляется  фагами, обладающими избирательной локализацией на хромосоме бактерий. Образование трансдуцирующего фага происходит путем выщепления профага из бактериальной хромосомы вместе с генами, расположенными на хромосоме клетки-донора рядом с профагом. При взаимодействии фагов с клетками реципиентного штамма происходит включение гена бактерии-донора вместе с ДНК дефектного фага в хромосому бактерии-реципиента.

3. Абортивная трансдукция. Принесенный фагом фрагмент ДНК донора не включается в хромосому клетки-реципиента, а остается в ее цитоплазме и в таком виде способен поддерживаться и проявляться фенотипически.

Во время деления бактериальной клетки фрагмент ДНК может передаваться только одной из двух дочерних клеток, т.е. наследоваться однолинейно и в конечном итоге утрачиваться в потомстве.

Вариантом специфической трансдукции является Фаговая (лизогенная) конверсия. Это изменения свойств бактерии-реципиента под влиянием генов умеренного фага.

Механизмы фаговой конверсии:

встраивание бактериофага в нуклеоид

ò 1. Активация гена бактериофага ò   ò 2. Внесение гена от бактерии-донора (дефектные фаги при трансдукции) ò   3.Встраивание около повреждённого промотора ò замена его фаговым промотором ò экспрессия «молчащих» генов бактерии-реципиента

появление у бактерии-реципиента нового признака

Трансформация -перенос генетического материала от одного организма к другому, где посредством генетической рекомбинации часть трансформирующей молекулы ДНК может обмениваться с частью хромосомной ДНК донора.

Трансформация бактерий — форма генетической изменчивости, при которой бактерия-реципиент поглощает из внешней среды трофическим путем фрагменты ДНК бактерии-донора. Это приводит к образованию рекомбинантных бактерий, обладающих некоторыми свойствами донорских клеток.

Впервые феномен трансформации был установлен Ф. Гриффитсом в 1928 г. на модели бескапсульного и капсульного пневмококков. Для проведения опыта использовали трех белых мышей. Первую мышь заражали живыми, бескапсульными (невирулентными) пневмококками. Второй мыши вводили убитую культуру капсульных (вирулентных) пневмококков; третьей мыши — смесь живых невирулентных пневмококков и убитых вирулентных пневмококков. В результате опыта в живых оставались первая и вторая мыши; погибала третья мышь, так как живые бескапсульные пневмококки поглощали фрагменты ДНК убитых капсульных и сами превращались в капсульные (вирулентные) пневмококки. Механизм такой трансформации оставался неясным в течение 16 лет. В 1944 г. осуществили трансформацию бескапсульных пневмококков в капсульные in vitro. Они добавили к культуре бескапсульных пневмококков ДНК, выделенную из капсульных пневмококков, в результате чего бескапсульные превратились в капсульные и стали вирулентными для мышей. Опыт доказал, что носителем единиц наследственности (генов) является ДНК.

Процесс трансформации бактерий можно подразделить на несколько фаз:

1) адсорбция ДНК-донора на клетке-реципиенте;

2) проникновение ДНК внутрь клетки-реципиента;

3) соединение ДНК с гомологичным участком хромосомы реципиента с последующей рекомбинацией.

Эффективность трансформации зависит от степени гомологичности ДНК донора и реципиента. Чем выше гомологичность, тем эффективнее спаривание, и тем больше образуется рекомбинантных бактерий. Межвидовая трансформация происходит гораздо реже, чем внутривидовая.










Последнее изменение этой страницы: 2018-05-10; просмотров: 236.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...