Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Особенности движения сжимаемого газа




Первая особенность заключается в том, что для дозвуковых скоростей для увеличения скорости струйки газа необходимо сужать, а для уменьшения скорости – расширять. Если же скорости сверхзвуковые, то для увеличения скорости струйка должна расширяться, а для уменьшения сжиматься.

Вторая особенность движения газа заключается в разном характере распространения малых возмущений в дозвуковом и сверхзвуковом потоках (рис.5.2).

 

 

Рис.5.2 Волны малых возмущений

 

Представим источник малых возмущений, который условно будем считать точечным.

- Пусть этот источник помещен в точке О (рис.5.2,а). В неподвижном газе малые возмущения будут равномерно распространятся во все стороны с оной и той же скоростью  в виде сферической звуковой волны.

-Если неподвижный источник малых возмущений поместить в дозвуковой поток газа ( ), то возмущения относительно газа так же будут распространяться по сферам, но центры этих сфер, как и сами сферы, будут сносится потоком в направлении движения газа (рис.5.2,б).  

Сферические волны, непрерывно исходящие из возмущающего центра, будут опережать движение самого тела.

-Если тело движется со скоростью, равной скорости звука ( ), то образуемые телом волны имеют общую касательную, причем сам источник возмущения (тело) находится в общей точке касания (рис.5.2,в). 

-Если тело движется со скоростью, большей скорости звука ( ), скорость возмущающего центра (тела) больше скорости распространения волн. Центр возмущения обгоняет волны, оставляя их позади себя в виде расширяющегося конуса, вершиной которого он является (рис.5.2,г).

Поскольку , то перемещающаяся сфера все время будет касаться конуса, половина угла которого  может быть определена из соотношения

 

.

Угол  называется углом возмущения, а конус, половина угла которого при вершине равна  - конусом возмущения; образующие конуса называются линиями возмущения.

При этом образующие конуса являются местом, где возмущения будут наибольшими.

Таким образом, в случае движения источника малых возмущений с дозвуковой скоростью возмущения от него передаются вперед, а в случае движения со сверхзвуковой скоростью источник “не предупреждает” впереди находящийся газ, так как малые возмущения не могут распространяться перед движущемся телом, а находятся внутри конуса возмущения.

Понятие скачка уплотнения. Тело, обтекаемое потоком воздуха, является совокупностью точечных источников возмущений. В сверхзвуковом потоке слабые возмущения точечных источников — конусы возмущений – суммируются, создавая более сильное возмущение среды — ударную волну (рис.5.3).

Скорость движения ударной волны значительно больше скорости звука. Поэтому ударная волна перемещается против сверхзвукового потока. Отходя от тела, она ослабевает, и скорость её движения уменьшается. Как только скорость движения ударной волны  станет равной скорости набегающего на тело сверхзвукового потока , она остановится.

Остановленная относительно потока ударная волна называетсяскачком уплотнения.

 


Рис.5.3 Физическая сущность скачка уплотнения

 

На скачке происходит резкое (скачкообразное) изменение всех параметров потока. Толщина скачка очень мала – приблизительно .

При прохождении через скачок уплотнения сверхзвуковой поток теряет часть своей кинетической энергии в результате пре­образования её в энергию давления и тепловую энергию. Поэтому одновременно с резким уменьшением скорости V в скачке про­исходит резкое повышение давления р, плотности  и температуры Т. Процессы, происходящие в скачках, необратимы.



Волновое сопротивление

 

Причиной необратимых потерь энергии потока в скачке является так называемое волновое сопротивление.

Образование скачков уплотнения в сверхзвуковом потоке вызывает перераспределение давлений по профилю крыла (рис.5.4). За головным скачком уплотнения давление резко увеличивается. Далее из–за увеличения скорости обтекания выпуклых поверхностей давление убывает. На задних скатах профиля уже создается подсос (разрежение).

Образуется аэродинамическая сила, направленная по потоку (против движения крыла), которая называетсяволновым сопротивлением .

По своей природе волновое сопротивление является сопротивлением давления и определяется потерями кинетической энергии потока. Оно зависит от формы скачка уплотнения.

 


Рис 5.4. Волновое сопротивление

Форма скачка уплотнения зависит от формы обтекаемого тела и числа М сверхзвукового потока (Рис.5.5).

-Прямой скачок уплотнения (рис.5.5,а). Направление потока при прохождений через прямой скачок уплотнения не изменяется. Скорость за ним становится дозвуковой

Прямой скачок уплотнения является границей между сверхзвуковой и дозвуковой частью потока.

-При небольшой сверхзвуковой скорости потока перед телом с тупой передней кромкой образуется прямой отсоединенный скачок уплотнения (5.5,в).

Потери энергии потока в таком скачке максимальны. С увеличением скорости сверхзвукового потока прямой скачок уплотнения приближается к передней кромке тела и начинает “складываться”.

 


Рис.5.5 Виды скачков уплотнения

-Косой скачок (рис.5.5,б). Это скачок уплотнения, поверхность которого наклонна к потоку. В косом скачке потери кинетической энергии потока значительно меньше, чем в прямых, и зависят от угла наклона скачка. Прохождение потока через косой скачок вызывает изменение направления потока. Скорость после косого скачка может остаться сверхзвуковой.

Сопротивление, создаваемое косыми скачками, значительно меньше. Образуются косые скачки уплотнения в потоке с большой сверхзвуковой скоростью при обтекании тел с острой передней кромкой (рис.5.5,г).  

Для уменьшения сопротивления сверхзвуковых самолетов предусматривают “дробление” прямых скачков, т.е. замену их системой косых скачков. Для этого делаются острыми передние кромки крыла, оперения, устанавливаются выдвижные конусы на входе в двигатель и профилированные иглы перед фюзеляжем (рис.5.5,е).

-По расположению относительно обтекаемого тела скачки уплотнения подразделяются на головные 1, хвостовые 2, местные 3, которые замыкают местные сверхзвуковые зоны, возникающие при дозвуковых скоростях полета (рис.5.5,д). 

Критическое число Маха.

Наименьшая скорость дозвукового полета, при которой где-либо в потоке, обтекающем самолет, появляются скорости, равные скорости звука, называ­ется критической скоростью полета , а соответствующее ей число Маха полета – критическим . При  наступает очень опасное явление, называемое волновым кризисом.

 зависит от геометрических характеристик профиля крыла. Чем больше  и  профиля, тем больше разрежение над крылом, тем меньше . Для каждого самолета критическое число Маха имеет вполне определенное постоянное значение. Так, например, для самолета Ту-154 Мкр = 0,88, а для АН-24 Мкр = 0,7.

Чем больше высота полета, тем раньше наступает волновой кризис – критическое число М уменьшается.

 

Рис.5.6 Зависимость коэффициентов Сy и Cx от числа М

 

Для измерения числа М полета на всех скоростных самолетах в соответствии с требо­ваниями ИКАО установлены специальные приборы – указатели числа М (МС-1). Критическое число М для данного самолета отмечено на шкале прибора красной чертой.

 

 


Занятие №11

 

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 243.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...