Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обмен данными между процессами и потоками




 Если абстрагироваться от вопросов синхронизации, то обмен данными между потоками одного процесса не представляет никакой сложности — имея общее адресное пространство и общие открытые файлы, потоки получают беспрепятственный доступ к данным друг друга. Другое дело — обмен данными потоков, выполняющихся в рамках разных процессов. Для защиты процессов друг от друга ОС возводит мощные изолирующие преграды, которые не только защищают процессы, но и не позволяют им передавать друг другу данные. Потоки разных процессов работают в разных адресных пространствах. Однако операционная система имеет доступ ко всем областям памяти, поэтому она может играть роль посредника в информационном обмене прикладных потоков. При возникновении необходимости в обмене данными поток обращается с запросом к ОС. По этому запросу ОС, пользуясь своими привилегиями, создает различные системные средства связи, такие, например, как конвейеры или очереди сообщений.

 Эти средства, так же как и рассмотренные выше средства синхронизации процессов, относятся к классу средств межпроцессного взаимодействия, то есть IPC (Inter-Process Communications).

Таблица 1

Механизм IPC Назначение
Динамический обмен данными (Dynamic Data Exchange - DDE) Устарел и труден в реализации. Рекомендуется использовать лишь в случаях крайней необходимости.
Буфер обмена Пересылка данных обычно выполняется с участием пользователя.
OLE 2.0 Имеются встроенные функции для пересылки данных через границы процессов. Излишне сложен для простого обмена данными.
Сообщения WM_USER Они работают - но чувствительны к ошибкам при передаче указателей.
Сообщения WM_COPYDATA Способ пересылки блока данных из одной программы в другую. Используется в тех случаях, когда скорость передачи данных не является критической и не требуется синхронизировать передачу данных.
Анонимные каналы (Anonymous pipes) Полезны для организации прямой связи между двумя процессами на одном ПК.
Именованные каналы (Named pipes) Полезны для организации прямой связи между двумя процессами на одном ПК или в сети.
Почтовые ячейки (mailslots) Полезны для организации связи одного процесса со многими на одном ПК или в сети.
Гнезда (sockets) Полезны для организации пересылки данных как в Windows-программы, так и в прочие программы, функционирующие на одном ПК, в сети или в интрасети.
События, взаимные исключения (mutexes) и семафоры Только для простого взаимодействия - пересылка данных невозможна.
Разделяемая память Непросто выделить вне DLL.
Файлы отображаемой памяти Обеспечивают одновременный доступ к объектам файла отображения из нескольких процессов.

 

 Многие из средств межпроцессного обмена данными выполняют также и функции синхронизации: в том случае, когда данные для процесса-получателя отсутствуют, последний переводится в состояние ожидания средствами ОС, а при поступлении данных от процесса-отправителя процесс-получатель активизируется.

 

Конвейеры

 

 Конвейеры как средство межпроцессного обмена данными впервые появились в операционной системе UNIX. Системный вызов pipe позволяет двум процессам обмениваться неструктурированным потоком байт. Конвейер представляет собой буфер в оперативной памяти, поддерживающий очередь байт по алгоритму FIFO. Для программиста, использующего системный вызов pipe, этот буфер выглядит как безымянный файл, в который можно писать и читать, осуществляя тем самым обмен данными.

 Системный вызов pipe имеет одно существенное ограничение — обмениваться данными могут только родственные процессы, точнее, процессы, которые имеют общего прародителя, создавшего данный конвейер. Если операционная система поддерживает потоки, то это же ограничение будет означать, что конвейером могут воспользоваться только потоки, относящиеся к такого рода процессам. Ограничение проистекает из-за того, что конвейер такого типа не имеет имени, а обращение к нему происходит по дескриптору файла, который, как это было сказано выше, имеет локальное для каждого процесса значение.

 При выполнении системного вызова pipe в процесс возвращаются два дескриптора файла, один для записи данных в конвейер, а другой для чтения данных из конвейера. Обычно для выполнения некоторой общей работы ведущий процесс сначала создает конвейер, а затем — несколько процессов-потомков с помощью соответствующего системного вызова. В результате механизм наследования процессов копирует для всех процессов-потомков значения дескрипторов, указывающих на один и тот же конвейер, так что все кооперирующиеся процессы, включая процесс-прародитель, могут использовать этот конвейер для обмена данными. Данные читаются из конвейера с помощью системного вызова read с использованием первого из возвращенных вызовом pipe дескрипторов файла, а записываются в конвейер с помощью системного вызова write с использованием второго дескриптора. Синтаксис системных вызовов read и write тот же, что и при работе с обычными файлами.

 Конвейер обеспечивает автоматическую синхронизацию процессов — если при использовании системного вызова read в буфере конвейера нет данных, то процесс, обратившийся к ОС с системным вызовом read, переводится в состояние ожидания и активизируется при появлении данных в буфере.

 Механизм конвейеров доступен не только программистам, но и пользователям большинства современных операционных систем. Именно системные вызовы pipe используются оболочкой (командным процессором) операционной системы для организации конвейера команд, когда выходные данные одной команды пользователя становятся входными данными для другой команды. Примером такого конвейера команд может служить показанная ниже строка командного интерпретатора shell ОС UNIX, которая передает выходные данные команды Is (чтение списка имен файлов текущего каталога) на вход команды wс (подсчет слов) с ключом -1:

 

ls | wc -1

 

 Результатом работы этой командной строки будет количество файлов в текущем каталоге.

 

Именованные конвейеры

 

 Именованные конвейеры представляют собой развитие механизма обычных конвейеров. Такие конвейеры имеют имя, которое является записью в каталоге файловой системы ОС, поэтому они пригодны для обмена данными между двумя произвольными процессами или потоками этих процессов.

 Именованный конвейер является специальным файлом типа FIFO и не имеет области данных на диске. Создается именованный конвейер с помощью того же системного вызова, который используется и для создания файлов любого типа, но только с указанием в качестве типа файла параметра FIFO. Системный вызов порождает в каталоге запись о файле типа FIFO с заданным именем, после чего любой процесс может открыть этот файл и передавать данные другому процессу, также открывшему файл с этим именем.

 Ввиду того что именованные конвейеры основаны на файловой системе, обычные конвейеры, создаваемые системным вызовом pipe, иногда называют программными конвейерами (software-pipes). Следует иметь в виду, что именованные конвейеры используют файловую систему только для хранения имени конвейера в каталоге, а данные между процессами передаются через буфер в оперативной памяти, как и в случае программного конвейера.

 

Очереди сообщений

 

 Механизм очередей сообщений похож на механизм конвейеров с тем отличием, что он позволяет процессам и потокам обмениваться структурированными сообщениями. При этом синхронизация осуществляется по сообщениям, то есть процесс, пытающийся прочитать сообщение, переводится в состояние ожидания в том случае, если в очереди нет ни одного полного сообщения. Очереди сообщений являются глобальными средствами коммуникаций для процессов операционной системы, как и именованные конвейеры, так как каждая очередь имеет в пределах ОС уникальное имя. В ОС UNIX в качестве такого имени используется числовое значение — так называемый ключ. Ключ является числовым аналогом имени файла, при использовании одного и того же значения ключа процессы будут работать с одной и той же очередью сообщений. Существует также функция, которая преобразует произвольное символьное имя в значение ключа, что позволяет программисту использовать для указания уникальных очередей имена вместо трудно запоминаемых чисел.

 Для работы с очередью сообщений процесс должен воспользоваться системным вызовом msgget, указав в качестве параметра значение ключа. Если очередь с данным ключом в настоящий момент не используется ни одним процессом, то для нее резервируется область памяти, а затем процессу возвращается идентификатор очереди, который, как и дескриптор файла, имеет локальное для процесса значение. Если же очередь уже используется, то процессу просто возвращается ее идентификатор. Системный администратор может управлять настройками операционной системы для изменения максимального объема памяти, отводимой очереди, а также максимального размера сообщения.

 После открытия очереди процесс может помещать в него сообщения с помощью вызова msgsnd или читать сообщения с помощью вызова msgrsv. Программист может влиять на то, как ОС будет обрабатывать ситуацию, когда процесс пытается читать сообщения, которые еще не поступили в очередь, то есть на синхронизацию процесса с данными. При задании в системных вызовах msgsnd и msgrcv параметра IPC_NOWAIT операционная система в любом случае будет возвращать управление в вызывающий процесс, даже если он пытается прочитать несуществующее сообщение (в последнем случае в процесс возвращается код ошибки). Без этого параметра процесс при отсутствии данных переводится в состояние ожидания. Параметр IPC_NOWAIT используется не только в очередях сообщений, но и в некоторых других средствах IPC, например в семафорах. При использовании параметра IPC_NOWAIT программист должен самостоятельно организовать ожидание данных.

 


[1] Реально это число немного меньше, так как несколько значений индексного указателя расходуется для идентификации специальных ситуаций, таких как «Последний кластер», «Неиспользуемый кластер», «Дефектный кластер» и «Резервный кластер».










Последнее изменение этой страницы: 2018-05-10; просмотров: 432.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...