Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Высокочастотные магнитомягкие материалы




Комментарии к рис.5.5.

Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону применения их в свою очередь можно подразделить на материалы для звуковых, ультразвуковых и низких радиочастот, для высоких радиочастот и для СВЧ.

По физической природе и строению высокочастотные магнитомягкие материалы подразделяют на магнитодиэлектрики и ферриты. Кроме того, при звуковых, ультразвуковых и низких радиочастотах можно использовать тонколистовые рулонные холоднокатанные электротехнические стали и пермаллои. Толщина сталей достигает 30-25 мкм, а пермаллой, как мееханически более мягкий сплав, может быть получен толщиной до 2-3 мкм. Основные магнитные свойства таких тонких магнитных материалов близки к свойствам материалов больших толщин, однако они имеют несколько повышенную коэрцитивную силу и высокую стоимость, а технология сборки магнитных цепей из них весьма сложна.



Магнитодиэлектрики – это фактически высокочастотные магнитные пластмассы, в которых наполнителем является ферромагнетик, а связующим – электроизоляционный материал органический (Например, фенолформальдегидная смола) или неорганический (например жидкое стекло). Магнитная проницаемость магнитодиэлектрика всегда меньше магнитной проницаемости ферромагнетика, составляющего его основу и вычисляется по формуле:

mмд = 1/ (1/mф + V/3)

Наиболее широко применяются магнитодиэлектрики на основе карбонильного железа, альсифера и молибденового пермаллоя.

Ферриты представляют собой оксидные магнитные материалы, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом.

Ферриты представляют собой оксидные магнитные материалы, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом.

Большое удельное сопротивление, превышающее удельное сопротивление железа в 103-1013 раз, а следовательно, и относительно незначительные потери энергии в области повышенных и высоких частот наряду с достаточно высокими магнитными свойствами обеспечивают ферритам широкое применение в радиоэлектронике.

Высокопроницаемые ферриты. В качестве магнитомягких материалов наиболее широко применяют никель-цинковые и марганец-цинковые ферриты. Они кристаллизуются в структуре шпинели и представляют собой твердые растворы замещения, образованные двумя простыми ферритами, один из которых (NiFe2O4 или MnFe2O4) является ферримагнетиком, а другой (ZnFe2O4) - немагнитен.

Для ферритов, используемых в переменных полях, кроме начальной магнитной проницаемости одной из важнейших характеристик является тангенс угла потерь tg d. Благодаря низкой проводимости составляющая потерь на вихревые токи в ферритах практически мала и ею можно пренебречь. В слабых магнитных полях незначительными оказываются и потери на гистерезис. Поэтому значение tgd в ферритах на высоких частотах в основном определяется магнитными потерями, обусловленными релаксациооными и резонансными явлениями.

В ферритах, как и в ферромагнетиках, реверсивная магнитная проницаемость может существенно изменяться под влиянием напряженности постоянного подмагничивающего поля, причем у высокопроницаемых ферритов эта зависимость выражена более резко, чем у высокочастотных ферритов с небольшой начальной магнитной проницаемостью.

Магнитные свойства ферритов зависят от механических напряжений, которые могут возникать при нанесении обмотки, креплении изделий и по другим причинам. Чтобы не было ухудшения магнитных характеристик, ферриты следует оберегать от механических нагрузок.

По электрическим свойствам ферриты относятся к классу полупроводников или даже диэлектриков. Их электропроводность обусловлена процессами электронного обмена между ионами переменной валентности("прыжковый" механизм). Электроны, учавствующие в обмене, можно рассматривать как носители заряда, концентрация которых практически не зависит от температуры.

Для ферритов характерна относительно большая диэлектрическая проницаемость, которая зависит от частоты и состава материала. С повышением частоты диэлектрическая проницаемость ферритов падает. Так, никель-цинковый феррит с начальной проницаемостью 200 на частоте 1 кГц имеет e = 400, а на частоте 10 МГц e = 15. Наиболее высокое значение e присуще марганец-цинковым ферритам, у которых она достигает сотен или тысяч.

Большое влияние на поляризационные свойства ферритов оказывают ионы переменной валентности. С увеличением их концентрации наблюдается возрастание диэлектрической проницаемости материала.

 

Номер Название

Марка ферритов

группы группы Ni-Zn Mn-Zn
I Общего применения 100НН, 400НН, 400НН1, 600НН, 1000НН, 2000НН 1000НМ, 1500НМ, 2000НМ, 3000НМ
II Термостабильные 7ВН, 20ВН, 30ВН, 50ВН, 100ВН, 150ВН 700НМ, 1000НМ3, 1500НМ1, 1500НМ3, 2000НМ1, 2000НМ3
III Высокопроницаемые   4000НМ, 6000НМ, 6000НМ1, 10000НМ, 20000НМ
IV Для телевизионной техники   2500НМС1, 3000НМС
V Для импульсных трансформаторов 300ННИ, 300ННИ1, 350ННИ, 450ННИ, 1000ННИ, 1100ННИ 1100НМИ
VI Для перестраиваемых контуров 10ВНП, 35ВНП, 55ВНП, 60ВНП, 65ВНП, 90ВНП,  
VII Для широкополосных трансформаторов 50ВНС, 90ВНС, 200ВНС, 300ВНС  

Магнитотвердые материалы

Комментарии к рис. 5.6.

К магнитотвердым материалам относятся магнитные материалы с широкой петлей гистерезиса и большой коэрцитивной силой Нс.

Основными характеристиками магнитотвердых материалов являются коэрцитивная сила Нс, остаточная индукция Вс, максимальная удельная магнитная энергия, отдаваемая во внешнее пространство wмах.

Магнитная проницаемость m магнитотвердых материалов значительно меньше, чем у магнитомягких. Чем «тверже» магнитный материал, т.е. чем выше его коэрцитивная сила Нс, тем меньше его магнитная проницаемость.

Влияние температуры на величину остаточной магнитной индукции Br, которая соответствует максимальному значению магнитной индукции Bmax, оценивается температурным коэффициентом остаточной магнитной индукции

где (Br)1 и (Br)2 –значения остаточной индукции материала при температурах Т1 и Т2 соответственно.

Максимальная удельная магнитная энергия wмах является важнейшим параметром при оценке качества магнитотвердых материалов.

Максимальная удельная магнитная энергия, Дж/м2:

Постоянный магнит при замкнутом магнитопроводе практически не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри сердечника, и магнитное поле вне сердечника отсутствует. Для использования магнитной энергии постоянных магнитов в замкнутом магнитопроводе создают воздушный зазор определенных размеров и конфигурации, магнитное поле в котором используют для технических целей.

Магнитный поток постоянного магнита с течением времени уменьшается. Это явление называется старением магнита. Старение может быть обратимым и необратимым.

В случае обратимого старения при воздействии на постоянный магнит ударов, толчков, резких колебаний температуры, внешних постоянных полей происходит снижение его остаточной магнитной индукции Br на 1…3%; при повторном намагничивании свойства таких магнитов восстанавливаются.

Если со временем в постоянном магните произошли структурные изменения, то повторное намагничивание не устраняет необратимого старения.

По назначению магнитотвердые материалы подразделяются на материалы для постоянных магнитов и материалы для записи и хранения информации (звуковой, цифровой, видеоинформации и др.).

По составу и способу получения магнитотвердые материалы подразделяют на налитые, порошковые и прочие.

Литые материалы на основе сплавов. Эти материалы имеют основой сплавы железо- никель- алюминий (Fe-Ni-Al) и железо- никель- кобальт (Fe-Ni-Co) и являются основными материалами для изготовления постоянных магнитов. Эти сплавы относят к прецизионным, так как их количество в решающей степени определяется строгим соблюдением технологических факторов.

Магнитотвердые литые материалы получают в результате дисперсионного твердения сплава при его охлаждении с определенной скоростью от температуры плавления до температуре начала распада. В процессе твердения происходит высокотемпературный распад твердого раствора на b-фазу и b2-фазу. b-фаза близка по составу к чистому железу, которое обладает выраженными магнитными свойствами. Она выделяется в виде пластинок однодоменной толщины. b2-фаза близка по составу к интерметаллическому соединению никель- алюминий Ni-Al, обладающему низкими магнитными свойствами.

В результате получают систему, состоящую из немагнитной фазы b2 с однодоменным сильномагнитным включениями фазы b, которая обладает большой коэрцитивной силой Нс. Такие сплавы не применяют из-за сравнительно низких магнитных свойств. Наибольшее распространенными являются сплавы железо- никель– алюминий, легированные медью Cu и кобальтом Со.

Марки этих материалов содержат буквы Ю и Н, указывающие на наличие в них алюминия и никеля. При использовании легирующих металлов в обозначение марок вводят дополнительные буквы, которые соответствуют этим металлам, например, сплав системы железо- никель- алюминий, легированный кобальтом, марки ЮНДК.

Бескобальтовые сплавы обладают относительно низкими магнитными свойствами, но они являются самыми дешевыми.

Кобальтовые сплавы применяют для изготовления изделий, которые требуют материалов с относительно высокими магнитными свойствами и магнитной изотропностью.

Высококобальтовые сплавы представляют собой сплавы с магнитной или с магнитной и кристаллической текстурой, содержащие кобальт более 15%.

Сплавы с магнитной текстурой получают в результате охлаждения сплава в магнитном поле с напряженностью 160…280 кА/м от высоких температур 1250…1300°С до температуры приблизительно 500°С. полученный сплав приобретает улучшенный магнитные характеристики лишь в направлении действия поля, т.е. материал становится магнитоанизотропный.



Для сплавов, содержащих 12% кобальта, термомагнитная обработка увеличивает магнитную энергию приблизительно на 20% а для сплавов, содержащих 20…25% кобальта, -на 80% и более.

Термомагнитная обработка повышает температуру начала дисперсного распада с 950°С в сплаве без кобальта до 800°С в сплаве, содержащем 24% кобальта.

В результате термомагнитной обработки у высококобальтовых сплавов повышается также температура точки Кюри с 730 до 850°С.

Кристаллическую текстуру получают в процессе особых условий охлаждения сплавов. В результате получают магниты с особой микротекстурой в виде столбчатых кристаллов, ориентированных в направлении легкого намагничивания. Это повышает магнитные свойства сплавов .магнитная энергия повышается на 60…70%. Увеличивается коэрцитивная сила Нс, остаточная магнитная индукция Br и коэффициент выпуклости кривой размагничивания материала:

Высококобальтовые текстурированные сплавы применяют для изготовления малогабаритных изделий, требующих высоких магнитных свойств и магнитной анизотропии.

Недостатками высококобальтовых материалов являются высокая твердость и хрупкость, что значительно осложняет их механическую обработку.

Порошковые магнитотвердые материалы (постоянные магниты). Порошковые магнитотвердые материалы применяют для изготовления миниатюрных постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, оксидные и микропорошковые.

Металлокерамические магниты по магнитным свойствам лишь немного уступают литым магнитам, но дороже их.

Получают металлокерамические магниты в результате прессования металлических порошков без связующего материала и спекания их при высоких температурах. Для порошков используют сплавы ЮНДК (сплав системы Fe-Ni-Al-, легированный кобальтом); на основе платины (Pt-Co, Pt-Fe); на основе редкоземельных металлов.

Металлокерамические магниты на основе сплавов ЮНДК обладают магнитными свойствами по параметрам Br и wmax на 10…20% ниже, чем у литых магнитов благодаря повышенной пористости спеченного порошкового материала до 5%; по механической прочности в 3…6 раз превосходят литые.

Магниты на основе платиновых сплавов обладают высокими значениями коэрцитивной силы Нс, которые в 1,5…2 раза выше Нс бариевых магнитов; высокой стабильностью параметров; по максимальной магнитной энергии wмах сравнимы со сплавом ЮНДК 24.

Сплавы на основа редкоземельных металлов (РЗМ) и урана при определенных соотношениях обладают очень высокими значениями коэрцитивной силы Нс (предельное теоретическое значение составляет 1032 кА/м) и рекордными значениями максимальной удельной магнитной энергии wмах (предельное теоретическое значение достигает 112 кДж/м3.

Среди сплавов на основе редкоземельных наибольшее значение имеют интерметаллические соединения типа RCo5, где R – редкоземельный металл. В марке соединения буква К означает кобальт, С – самарий, П – празеодим.

Сплавы на основе редкоземельных металлов получают холодным прессованием порошка сплава RCo5 до высокой степени плотности, спеканием брикетов из порошков в присутствии жидкой фазы и литьем многокомпонентных сплавов, в которых кобальт замещен медью и железом.

Металлопластические магниты имеют пониженные магнитные свойства по сравнению с литыми магнитами, однако они обладают большим электрическим сопротивлением, малой плотностью, меньшей стоимостью.

Получают металлопластические магниты, кок и металлокерамические, из металлических порошков, которые прессуют вместе с изолирующей связкой и нагревают до невысоких температур, необходимых для полимеризации связующего вещества.

Бариевыемагниты обладают следующими свойствами:

Значения остаточной магнитной индукции Br в 2…4 раза меньше, чем у литых магнитов;

Большая коэрцитивная сила Нс, что придает им повышенную стабильность при воздействии внешних магнитных полей, ударов и толчков;

Плотность d примерно в 1,5 раза меньше плотности сплавов типа ЮНДК, что существенно снижает массу магнитных систем;

Удельное электрическое сопротивление r (104…107 Ом*м) в миллионы раз выше, чем сопротивление магнитотвердых сплавов, поэтому ферриты бария используют в цепях, подвергающихся действию высокочастотных полей;

Не содержат дефицитных и дорогих металлов, поэтому по стоимости бариевые магниты примерно в 10 раз дешевле магнитов из сплава ЮНДК.

К недостаткам бариевых магнитов относят:

плохие механические свойства (высокая хрупкость и твердость);

большую зависимость магнитных свойств от температуры (температурный коэффициент остаточной магнитной индукции ТКВr в 10 раз больше, чем ТКВr литых магнитов);

эффект необратимой потери магнитных свойств после охлаждения магнита до температуры -60°С и ниже (после охлаждения и последующего нагревания до начальной температуры магнитные свойства не восстанавливаются).

В отличии от технологии изготовления магнитомягких ферритов после сухого помола для лучшего измельчения частиц исходного сырья производят мокрый помол. Полученную массу отстаивают, заливают в пресс-формы и затем прессуют в магнитном поле при медленном увеличении давления и одновременной откачке воды. После прессования изделие размагничивают, для чего включают и выключают ток, который имеет обратное по сравнению с намагничивающим током направление.

Кроме мокрого для изготовления бариевых магнитов применяют также сухое прессование.

Промышленность выпускаем бариевые изотропные БИ и бариевые анизотропные БА магниты.

Кобальтовые магниты обладают следующими свойствами:

более высокая стабильность параметров, чем у бариевых;

температурный гистерезис, т.е. зависимость магнитных свойств от температуры, которая появляется не в области отрицательных температур, как у бариевых магнитов, а при нагревании до температуры выше 80°С;

из-за большой хрупкости и низкой механической прочности их крепят с помощью клея;

высокая стоимость.

Технология изготовления кобальтовых магнитов отличается от технологии получения бариевых ферритов операцией термомагнитной обработки, которая состоит в нагревании спеченных магнитов до температуры 300…350°С в течении 1,5 часов и охлаждения в магнитном поле в течении 2 часов.

Магниты из микропорошков Mn-Bi поучают прессованием специально подготовленного микропорошка. Для этого марганцево-висмутовый сплав (23% Mn; 77% Bi) подвергают механическому дроблению до получения частиц однодоменных размеров (5…8 мкм). Пропуская порошок через магнитный сепаратор отделяют ферромагнитную фазу Mn-Bi от немагнитных частиц марганца и висмута. В результате прессования микропорошка ферромагнитной фазы при температуре примерно 300°С в магнитном поле получают магниты, которые состоят из отдельных частиц с одинаковой ориентацией осей легкого намагничивания; сохраняют магнитные свойства только до температуры не ниже 20°С (при понижении свойства быстро ухудшаются и для их восстановления необходимо повторное намагничивание), что существенно ограничивает их применение.

Железные и железокобальтовыемагниты из микропорошков Fe и Fe-Co изготавливают с применением химических способов получения частиц нужного размера (0,01…0,1). Из полученного порошка магниты прессуют и пропитывают раствором смол. Пропитка повышает коррозийную стойкость железосодержащих магнитов.

 

 



Тесты к главе 5

Вопрос 1. (мт=0,8)

Магнитные свойства материалов обусловлены внутренними скрытыми формами движения электрических зарядов, представляющими собой элементарные круговые токи. Укажите, что является такими круговыми токами?

1: Движение свободных электронов между остовами кристаллической решетки.

2:  Вращение электронов вокруг собственных осей.

3: Вращение магнитных моментов в направление внешнего поля.

4:  Орбитальное вращение электронов в атомах.

 

Вопрос 2. (мт=0,6)

 Укажите, что характеризует явление магнитострикции?

1: Изменение линейных размеров ферромагнитных монокристаллов при намагничивании.

2: Процесс смещения границ магнитных доменов.

3: Процесс ориентации магнитных доменов в направлении поля.

 

Вопрос 3. (мт=0,8)

Какой вид обработки железа позволяет увеличить максимальную магнитную проницаемость до величины 200 000?

1: Электролиз.

2: Термическое разложение.

3: Переплавка в вакууме.

4: Обработка в водороде.

5: Рафинирование чугуна в мартеновских печах.

 

Вопрос 4. (мт=0,5)

Укажите марку листовой электротехнической стали среди приведенных магнитных материалов.

1: 45Н

2: Е786

3: 5ОНХС

4: Э48

5: ЮНДУ

 

Вопрос 5. (мт=0,3)

Укажите правильный ответ.

1: При изготовлении постоянных магнитов применяются магнито – мягкие материалы.

2: При изготовлении постоянных магнитов применяются магнитно – твердые материалы.

 

Вопрос 6. (мт=0,6)

 Какое определение соответствует листовой электротехнической стали?

1: Это сплав железа, алюминия и кремния, содержание которого 9,6%.

2: Это сплав железа с кремнием, содержание которого 0,8 – 4,8%.

3: Это сплав железа с никелем.

4: это смесь окиси железа с окислами цинка, марганца, никеля и др.

 

Вопрос 7. (мт=0,8)

Как влияет введение кремния в состав электротехнической стали на величину потерь на вихревые токи и гистерезис?

1: Потери снижаются.

2: Потери увеличиваются.

3: Потери не изменяются.

 

Вопрос 8. (мт=0,5)

Укажите правильный ответ.

1: Магнитомягкими материалами называются материалы с большой коэрцитивной силой и сравнительно малой магнитной проницаемостью.

2: Магнитомягкими материалами называются материалы с малой коэрцитивной силой и большой магнитной проницаемостью.

3: Магнитомягкими материалами называются материалы с большим удельным сопротивлением и малой магнитной проницаемостью.

 

Вопрос 9. (мт=0,4)

 Какие из приведенных веществ относятся к диамагнетикам?

1: Водород (Н).

2:Кислород (О2).

3: Алюминий (Al).

4: Золото (Au).

5: Железо (Fe).

 

Вопрос 10.  (мт=0,2)

Какие из приведенных веществ относятся к парамагнетикам?

1: Инертные газы.

2: Щелочные металлы.

3: Цинк (Zn).

4: Углекислый газ (CO2).

5: Платина (Pt).

 

Вопрос 11. (мт=0,6)

 Какие сплавы обладают незначительными изменениями магнитной проницаемости при изменении напряженности поля?

1: Перминвар (Fe – Ni – Co).

2: Сплав – пермендюр (Fe – Co).

3: Сплав – альсифер (Fe – Si – Al).

4: Железоникелевый сплав – пермаллой (Fe – Ni).

 

Вопрос 12. (мт=0,5)

 Какие сплавы обладают особо высокой индукцией насыщения?

1: Железокобальтовый сплав – пермендюр.

2: Феррит.

3: Пермаллой.

4: Альсифер.

5: Никелевая сталь.

 

Вопрос 13. (мт=0,6)

Укажите, какие материалы относятся к немагнитным?

1: Сплавы альни.

2: Никелевая сталь

3: Сплавы меди и алюминия.

4: Углеродистая сталь.

5: Сплавы железа с кремнием и алюминием – пермаллои.

 

Вопрос 14.  (мт=0,7)

Укажите материалы, используемые для изготовления постоянных магнитов.

1: Альсифер.

2: Пермаллой.

3: Никелевая сталь.

4: Сплавы альнико.

5: Бариевый феррит.

 

Вопрос 15. (мт=0,5)

Укажите пластически деформируемые магнитные сплавы.

1: Викаллой.

2:. Кунифе.

3: Магнико.

4: Ферроксдюр.

5: Альсифер.



Заключение

Существенным отличием данного учебного пособия является использование графового представления учебного материала, что способствует развитию наглядно-образной памяти, внимания, активизации познавательной деятельности студентов.

Преимущества структурированного изложения материала обеспечивает целостность восприятия изучаемого материала, системность его подачи и анализа, прочность усвоения содержания дисциплины. При использовании графов студенты учатся не только находить признаки материалов, но и выявлять их связи, увязывать признаки в неразрывную совокупность.

Использование графов при обучении студентов «Материаловедению и технологии конструкционных материалов» повышает мотивацию к более глубокому самостоятельному изучению предмета. В процессе представления материала в виде графов снимаются междисциплинарные границы и закрепляются связи между различными курсами. При самостоятельном изучении темы раздела графы направляют студента, позволяют достичь как ситуативного, так и долгосрочного эффекта в осмыслении понятий материаловедения. Каждый из них несет определенную нагрузку, относится к тем базовым внутренним составляющим всего каркаса знаний, которые могут затем и наращиваться, и расширяться, но уже всегда останутся в сознании в обобщенном и систематизированном виде. Снимается когнитивный диссонанс: студент овладевает критической массой знаний и может самостоятельно найти ответы на интересующие его вопросы по использованию материалов и технологии их получения.










Последнее изменение этой страницы: 2018-06-01; просмотров: 452.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...