Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Глава 2. Проводниковые материалы




Классификация проводников

Комментарии к рис. 2.1.

Проводниками называются вещества, внутри которых в случае электростатического равновесия электрическое поле отсутствует. Некомпенсированные заряды проводников локализуются в бесконечном, тонком поверхностном слое. Если электрическое поле отлично от нуля, в проводнике возникает электрический ток. Проводниками электрического тока могут быть твёрдые тела, жидкости, а при особых условиях и газы. Из твёрдых проводников широко применяются металлы и их сплавы.

По удельному сопротивлению материалы делятся на группы:

- металлы и сплавы высокой проводимости при нормальной температуре r≤0,05 мкОм·м;

- металлы и сплавы высокого сопротивления при нормальной температуре  r≥0,3 мкОм·м.

Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электрических нагревательных приборов, нитей ламп накаливания.

Особую группу составляют криопроводникии сверхпроводники. Это металлы, обладающие чрезвычайно малым удельным сопротивлением


при низких криогенных температурах.

Классификация по агрегатному состоянию. К жидким проводникам относят расплавленные металлы и электролиты. Механизм прохождения тока в металлах как в твёрдом, так и в жидком состояние обусловлен движением свободных электронов под воздействием электрического поля. Поэтому металлы называются проводниками с электронной проводимостью или проводниками первого рода. Проводниками второго рода или электролитами называются растворы кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов, вследствие чего состав электролита постепенно меняется (закон Фарадея).

Все газы и пары при низких напряжениях не являются проводниками, при достаточной напряжённости поля Е, при которой начинается ионизация газа, газ становится проводником с электронной и ионной проводимостью. Сильно ионизированный газ превращается в плазму.

Электрические и механические свойства проводников.

1. Удельная проводимость (g) или удельное сопротивление (r).

2. Температурный коэффициент удельного сопротивления TKr

3. Коэффициент теплопроводности.

4. Контактная разность потенциалов.

5. Работа выхода электронов из металлов.

6. Предел прочности на растяжение

7. Относительное удлинение перед разрывом.

8. Хрупкость.

9. Твёрдость.

10. Изгиб.

Удельная проводимость, связь с плотностью тока. Основные соотношения: ток в проводнике I [A] связан с напряженностью поля E [В/м] выражением I=g·E, где [См/м] – удельная проводимость.

 [Ом·м]

- для проводникового сопротивления R, длиной l и сечением S.

Удельная проводимость  ,

где e - заряд электрона, n0 - число свободных электронов, l - длина среднего пробега между двумя узлами кристаллической решётки, m - масса электронов, vT  - средняя скорость теплового движения электронов. Для различных металлов vT и n0 различны, поэтому удельная проводимость зависит от l, которая определяется структурой металла. Чистые металлы с правильной кристаллической решёткой характеризуются наименьшими значениями. Микродефекты кристаллической решётки уменьшают подвижность электронов.

Температурный коэффициент удельного сопротивления. С ростом температуры вследствие изменения колебаний узлов кристаллической решётки увеличивается число препятствий на пути движения свободных электронов, то есть уменьшается l. Следовательно, увеличивается удельное сопротивление, так как уменьшается проводимость. Температурный коэффициент при этом будет положительным, так как

.

При переходе из твёрдого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления – это справедливо только для тех металлов, у которых при плавление увеличивается объём, то есть уменьшается плотность, у металлов уменьшающих объём, удельное сопротивление уменьшается.

Удельное сопротивление сплавов. Примеси и нарушение структуры металла увеличивают удельное сопротивление. Значительное увеличение удельного сопротивления наблюдается у твёрдых растворов при совместной кристаллизации.

Теплопроводность металлов. За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют электропроводность. Поэтому коэффициент теплопроводности lT у металлов выше чем у диэлектриков. Чем выше удельная проводимость, тем больше коэффициент теплопроводности. При повышении температуры отношениеlT/g растёт. Математически это выражается законом Видемана-Франца-Лоренца:

,

где L0 – число Лоренца, T – термодинамическая температура.

.

Значение постоянной Больцмана k=1,38·10-23 Дж/К, заряда электрона e=1,6·10-19 Кл.

Термоэлектродвижущая сила. При соприкосновении двух разных проводников (или полупроводников) между ними возникает контактная разность потенциалов (термопара). Причина - различные значения работы выхода электронов из различных металлов.

,

где n0 - концентрация электронов, UA,UB - потенциалы соприкасающихся металлов, k – постоянная Больцмана.

Если температуры спаев одинаковы, то сумма разности потенциалов в замкнутой цепи = 0. Если один из спаев имеет температуру Т1, а другой Т2, то

;

или , где  - постоянный для данной пары проводников коэффициент термо-ЭДС. Таким образом термо-ЭДС пропорциональна разности температур спаев.

Температурный коэффициент линейного расширения. Температурный коэффициент линейного расширения проводников вычисляется так же, как и для диэлектриков. .

Также как и для диэлектриков, используется при рассмотрении работы разнородных сопряжённых материалов в конструкциях аппаратов, изоляторов, для предотвращения растрескивания.

Коэффициент al необходим также для расчёта температурного коэффициента электрического сопротивления провода . Для чистых металлов , однако для сплавов с малым значением ar формула имеет практическое значение.










Последнее изменение этой страницы: 2018-06-01; просмотров: 234.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...