Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Собственные затухающие колебания




В реальных колебательных контурах омическое сопротивление всегда отлично от нуля. Вследствие этого энергия, первоначально запасенная в контуре, непрерывно расходуется на выделение ленц − джоулева тепла, что приводит к затуханию собственных колебаний.

Найдем уравнение затухающих колебаний. Для этого рассмотрим контур, содержащий, кроме индуктивности L и емкости C, омическое сопротивление R (рис.3). При разомкнутом ключе K зарядим конденсатор до напряжения U0, затем цепь замкнем. При разрядке конденсатора в цепи возникнет ток i, изменяющийся со временем. Однако мгновенное значение силы тока будет удовлетворять всем законам постоянного тока. На основании второго закона Кирхгофа для данного контура можно записать

В этом выражении сделаем замену величины

Тогда получим:

Разделив левую и правую часть на L и обозначив

получим дифференциальное уравнение собственных затухающих колебаний

Решением этого уравнения является колебания вида

где φ − начальная фаза колебаний, определяющая колебательный процесс в начальный момент времени (t = 0); ω0 − циклическая частота затухающих колебаний, численно равная числу полных колебаний, совершаемых системой за 2π секунд; (ω0 + φ) − фаза колебаний, определяющая колебательный процесс в любой момент времени; Q0e βt − амплитуда колебаний.

Амплитуда колебаний

A = Q0e βt

не является постоянной величиной, а с течением времени непрерывно убывает. Быстрота убывания амплитуды колебаний определяется коэффициентом затухания

β = R / 2L

который численно равен обратной величине времени, в течении которого амплитуда колебаний убывает в е раз.

Для количественной характеристики затухания колебаний пользуются логарифмическим декрементом затухания δ, который равен натуральному логарифму отношения двух последовательных амплитуд, отличающихся по времени на один период:

Физический смысл его состоит в следующем: логарифмический декремент затухания численно равен обратной величине числа колебаний, совершаемых за время, в течении которого амплитуда уменьшается в е раз.

Циклическая частота собственных затухающих колебаний ω0 связана с частотой собственных незатухающих колебаний ω0 соотношением

Затухающие колебания, строго говоря, не являются периодическим процессом, они не имеют конечного периода. Однако если затухание мало, т.е.

то их можно рассматривать как гармонические колебания с периодом

Из (9) и (10) видно, что для собственных затухающих колебаний циклическая частота меньше, а период больше соответствующих частоты и периода собственных незатухающих колебаний. При уменьшении сопротивления, когда R → 0, то ω0 → ω0 и T0 → T0, т.е. затухающие колебания переходят в незатухающие.

С увеличением сопротивления контура R период собственных колебаний T0 возрастает и при выполнении условия

т.е. когда

обращается в бесконечность. Это сопротивление называется критическим. Оно зависит от величины емкости и индуктивности. Если сопротивление контура превышает критическое

то электрические колебания не возникают, и заряд конденсатора уменьшается монотонно, асимптотически приближаясь к нулю. Такой заряд конденсатора называется апериодическим.

Наряду с зарядом, напряжение на обкладках и сила тока в цепи тоже совершает затухающие колебания с тем же периодом. Напряжение и ток будут изменяться по следующим законам:

Путем преобразований выражение (11) можно привести к виду:

где

Следовательно, при наличии омического сопротивления в контуре сила тока опережает по фазе напряжение на конденсаторе более чем на π / 2.

Колебательный контур характеризуется добротностью Q, которая вычисляется по формуле

Экспериментально добротность может быть найдена по затуханию как отношение числа π к логарифмическому декременту затухания:

В данной работе требуется изучить зависимость периода T и добротности Q линейного колебательного контура от его параметров L, C, R.










Последнее изменение этой страницы: 2018-06-01; просмотров: 185.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...