Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ИНФОРМАЦИЯ И ФИЗИЧЕСКИЙ МИР




 

Известно большое количество работ, посвященных физической трактовке информации. Эти работы в значительной мере построены на основе аналогии формулы Больцмана, описывающей энтропию статистической системы материальных частиц, и формулы Хартли.

Заметим, что при всех выводах формулы Больцмана явно или неявно предполагается, что макроскопическое состояние системы, к которому относится функция энтропии, реализуется на микроскопическом уровне как сочетание механических состояний очень большого числа частиц, образующих систему (молекул). Задачи же кодирования и передачи информации, для решения которых Хартли и Шенноном была развита вероятностная мера информации, имели в виду очень узкое техническое понимание информации, почти не имеющее отношения к полному объему этого понятия. Таким образом, большинство рассуждений, использующих термодинамические свойства энтропии применительно к информации нашей реальности, носят спекулятивный характер. В частности, являются необоснованными использование понятия «энтропия» для систем с конечным и небольшим числом состояний, а также попытки расширительного методологического толкования .результатов теории вне довольно примитивных механических моделей, для которых они были получены. Энтропия и негэнтропия - интегральные характеристики протекания стохастических процессов - лишь параллельны информации и превращаются в нее в частном случае.

Информацию следует считать особым видом ресурса, при этом имеется ввиду толкование «ресурса» как запаса неких знаний материальных предметов или энергетических, структурных или каких-либо других характеристик предмета. В отличие от ресурсов, связанных с материальными предметами, информационные ресурсы являются неистощимыми и предполагают существенно иные методы воспроизведения и обновления, чем материальные ресурсы.

Рассмотрим некоторый набор свойств информации:

• запоминаемость;

• передаваемость;

• преобразуемость;

• воспроизводимость;

• стираемость.

Свойствозапоминаемости - одно из самых важных. Запоминаемую информацию будем называть макроскопической (имея ввиду пространственные масштабы запоминающей ячейки и время запоминания). Именно с макроскопической информацией мы имеем дело в реальной практике.

Передаваемость информации с помощью каналов связи (в том числе с помехами) хорошо исследована в рамках теории информации К. Шеннона. В данном случае имеется ввиду несколько иной аспект - способность информации к копированию, т.е. к тому, что она может быть «запомнена» другой макроскопической системой и при этом останется тождественной самой себе. Очевидно, что количество информации не должно возрастать при копировании.

Воспроизводимость информации тесно связана с ее передаваемостью и не является ее независимым базовым свойством. Если передаваемость означает, что не следует считать существенными пространственные отношения между частями системы, между которыми передается информация, то воспроизводимость характеризует неиссякаемость и неистощимость информации, т.е. что при копировании информация остается тождественной самой себе.

Фундаментальное свойство информации -преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В общем случае количество информации в процессах преобразования меняется, но возрастать не может. Свойствостираемости информации также не является независимым. Оно связано с таким преобразованием информации (передачей), при котором ее количество уменьшается и становится равным нулю.

Данных свойств информации недостаточно для формирования ее меры, так как они относятся к физическому уровню информационных процессов.

Подводя итог сказанному в п. 2.4 - 2.5, отметим, что предпринимаются (но отнюдь не завершены) усилия ученых, представляющих самые разные области знания, построить единую теорию, которая призвана формализовать понятие информации и информа-ционного процесса, описать превращения информации в процессах самой разной природы. Движение информации есть сущность процессов управления, которые суть проявление имманентной активности материи, ее способности к самодвижению. С момента возникновения кибернетики управление рассматривается применительно ко всем формам движения материи, а не только к высшим (биологической и социальной). Многие проявления движения в неживых - искусственных (технических) и естественных (природных) - системах также обладают общими признаками управления, хотя их исследуют в химии, физике, механике в энергетической, а не в информационной системе представлений. Информационные аспекты в таких системах составляют предмет новой междисциплинарной науки - синергетики.

Высшей формой информации, проявляющейся в управлении в социальных системах, являются знания. Это наддисциплинарное понятие, широко используемое в педагогике и исследованиях по искусственному интеллекту, также претендует на роль важнейшей философской категории. В философском плане познание следует рассматривать как один из функциональных аспектов управления. Такой подход открывает путь к системному пониманию генезиса процессов познания, его основ и перспектив.

 

Контрольные вопросы

 

1. Какая форма представления информации - непрерывная или дискретная -приемлема для компьютеров и почему?

2. В чем состоит процедура дискретизации непрерывной информации?

3. Как определяется понятие энтропии?

4. Каким образом определяется единица количества информации при кибернетическом подходе?

5. Каковы особенности определения количества информации, связанной с появлением различных знаков в сообщениях?

 

СИСТЕМЫ СЧИСЛЕНИЯ

 

ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

 

Система счисления - принятый способ записи чисел и сопоставления этим записям реальных значений. Все системы счисления можно разделить на два класса: позиционные и непозиционные. Для записи чисел в различных системах счисления используется некоторое количество отличных друг от друга знаков. Число таких знаков в позиционной системе счисления называетсяоснованием системы счисления.Ниже приведена табл. 1.4, содержащая наименования некоторых позиционных систем счисления и перечень знаков (цифр), из которых образуются в них числа.

 

 

Таблица 1.4. Некоторые системы счисления

 

Основание Система счисления Знаки
2 Двоичная 0,1
3 Троичная 0,1.2
4 Четвертичная 0,1,2,3
5 Пятиричная 0,1,2,3,4
8 Восьмиричная 0,1,2,3,4,5,6,7
10 Десятичная 0,1,2,3,4,5,6,7,8,9
12 Двенадцатиричная 0,1,2,3,4,5,б,7,8,9,А,В
16 Шестнадцатиричная 0,1,2,3,4,5,6,7,8,9,A.B,D,E,F

 

В позиционной системе счисления число может быть представлено в виде суммы произведений коэффициентов на степени основания системы счисления:

 

AnAn-1An-2 … A1,A0,A-1,A-2 =

АnВn + An-1Bn-1 + ... + A1B1 + А0В0 + A-1B-1 + А-2В-2 + ...

 

(знак «точка» отделяет целую часть числа от дробной; знак «звездочка» здесь и ниже используется для обозначения операции умножения). Таким образом, значение каждого знака в числе зависит от позиции, которую занимает знак в записи числа. Именно поэтому такие системы счисления называют позиционными. Примеры (десятичный индекс внизу указывает основание системы счисления):

 

23,43(10) = 2*101 + З*10° + 4*10-1 + З*10-2

 

(в данном примере знак «З» в одном случае означает число единиц, а в другом - число сотых долей единицы);

 

692(10) = 6* 102 + 9*101 + 2.

 

(«Шестьсот девяносто два» с формальной точки зрения представляется в виде «шесть умножить на десять в степени два, плюс девять умножить на десять в степени один, плюс два»).

 

1101(2)= 1*23 + 1*22+0*21+ 1*2°;

112(3) = l*32+ 1*31 +2*3°;

341,5(8) =3*82+ 4*81 +1*8° +5*8-1;

A1F4(16) = A*162 + 1*161 + F*16° + 4*16-1.

 

При работе с компьютерами приходится параллельно использовать несколько позиционных систем счисления (чаще всего двоичную, десятичную и шестнадцатиричную), поэтому большое практическое значение имеют процедуры перевода чисел из одной системы счисления в другую.Заметим, что во всех приведенных выше примерах результат является десятичным числом, и, таким образом, способ перевода чисел из любой позиционной системы счисления в десятичную уже продемонстрирован.

Чтобы перевести целую часть числа из десятичной системы в систему с основанием В, необходимо разделить ее на В. Остаток даст младший разряд числа. Полученное при этом частное необходимо вновь разделить на В - остаток даст следующий разряд числа и т.д. Для перевода дробной части ее необходимо умножить на В. Целая часть полученного произведения будет первым (после запятой, отделяющей целую часть от дробной) знаком. Дробную же часть произведения необходимо вновь умножить на В. Целая часть полученного числа будет следующим знаком и т.д.

Отметим, что кроме рассмотренных выше позиционных систем счисления существуют такие, в которых значение знака не зависит от того места, которое он занимает в числе. Такие системы счисления называются непозиционными. Наиболее известным примером непозиционной системы является римская. В этой системе используется 7 знаков (I, V, X, L, С, D, М), которые соответствуют следующим величинам:

 

1(1)            V(5)           X(10)         L(50)          С (100)      D(500)       M(1000)

 

Примеры: III (три), LIX (пятьдесят девять), DLV (пятьсот пятьдесят пять).

Недостатком непозиционных систем, из-за которых они представляют лишь исторический интерес, является отсутствие формальных правил записи чисел и, соответственно, арифметических действий над ними (хотя по традиции римскими числами часто пользуются при нумерации глав в книгах, веков в истории и др.).

 

ДВОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

 

Особая значимость двоичной системы счисления в информатике определяется тем, что внутреннее представление любой информации в компьютере является двоичным, т.е. описываемым наборами только из двух знаков (0 и 1).

Конкретизируем описанный выше способ в случае перевода чисел из десятичной системы в двоичную. Целая и дробная части переводятся порознь. Для перевода целой части (или просто целого) числа необходимо разделить ее на основание системы счисления и продолжать делить частные от деления до тех пор, пока частное не станет равным 0. Значения получившихся остатков, взятые в обратной последовательности, образуют искомое двоичное число. Например:

 

                               Остаток

25 : 2 = 12                                  (1),

12 : 2 = 6                                  (0),

6 : 2 = 3                                         (0),

3 : 2 = 1                                         (1),

1 : 2 = 0                                         (1).

 

Таким образом

 

25(10)=11001(2).

 

Для перевода дробной части (или числа, у которого «0» целых) надо умножить ее на 2. Целая часть произведения будет первой цифрой числа в двоичной системе. Затем, отбрасывая у результата целую часть, вновь умножаем на 2 и т.д. Заметим, что конечная десятичная дробь при этом вполне может стать бесконечной {периодической) двоичной. Например:

 

0,73 • 2 = 1,46 (целая часть 1),

0,46 • 2 = 0,92 (целая часть 0 ),

0,92 • 2 = 1,84 (целая часть 1),

0,84 • 2 = 1,68 (целая часть 1) и т.д.

 

В итоге

 

0,73(10) =0,1011...(2).

Над числами, записанными в любой системе счисления, можно; производить различные арифметические операции. Так, для сложения и умножения двоичных чисел необходимо использовать табл. 1.5.

 

Таблица 1.5. Таблицы сложения и умножения в двоичной системе

 

 

Заметим, что при двоичном сложении 1 + 1 возникает перенос единицы в старший разряд - точь-в-точь как в десятичной арифметике:

 

3.3. ВОСЬМЕРИЧНАЯ И ШЕСТНАДЦАТИРИЧНАЯ
СИСТЕМЫ СЧИСЛЕНИЯ

 

С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые в этом пункте системы представляют большой интерес.

Хотя компьютер «знает» только двоичную систему счисления, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатиричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста - гораздо проще переводов между любой из этих трех систем и десятичной.

Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Например, переведем число 58,32(10):

 

58 : 8 = 7   (2 в остатке),

7 : 8 = 0     (7 в остатке).

0,32 • 8 = 2,56,

0,56 • 8 = 4,48,

0,48-8=3,84,...

 

Таким образом,

 

58,32(10) =72,243... (8)

 

(из конечной дроби в одной системе может получиться бесконечная дробь в другой).

Перевод чисел из десятичной системы счисления в шестнадцатеричную производится аналогично.

С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатиричных чисел. Для этого воспользуемся табл. 1.6 чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления.

Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Например:

 

11011001= 11011001, т.е. 11011001(2) =331(8).

 

Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой».

Перевод целого двоичного числа в шестнадцатиричное производится путем разбиения данного числа на группы по 4 цифры - «двоичные тетрады»:

 

1100011011001 = 1 1000 1101 1001, т.е. 1100011011001(2)= 18D9(16).

 

Для перевода дробных частей двоичных чисел в восьмеричную или шестнадцатиричную системы аналогичное разбиение на триады или тетрады производится от точки вправо (с дополнением недостающих последних цифр нулями):

 

0,1100011101(2) =0,110 001 110 100 = 0,6164(8),

0,1100011101(2) = 0,1100 0111 0100 = 0,C74(16).

 

Перевод восьмеричных (шестнадцатиричных) чисел в двоичные производится обратным путем - сопоставлением каждому знаку числа соответствующей тройки (четверки) двоичных цифр.

 

Таблица 1.6 Соответствие чисел в различных системах счисления

 

Десятичная Шестнадцатиричная Восьмеричная Двоичная
0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 А 12 1010
11 В 13 L011
12 С 14 1100
13 D 15 1101
14 E 16 1110
15 F 17 1111

 

Преобразования чисел из двоичной в восьмеричную и шестнадцатиричную системы и наоборот столь просты (по сравнению с операциями между этими тремя системами и привычной нам десятичной) потому, что числа 8 и 16 являются целыми степенями числа 2. Этой простотой и объясняется популярность восьмеричной и шестнадцатиричной систем в вычислительной технике и программировании.

Арифметические действия с числами в восьмеричной и шестнадцатиричной системах счисления выполняются по аналогии с двоичной и десятичной системами. Для этого необходимо воспользоваться соответствующими таблицами. Для примера табл. 1.7 иллюстрирует сложение и умножение восьмеричных чисел.

Рассмотрим еще один возможный способ перевода чисел из одной позиционной системы счисления в другую - метод вычитания степеней. В этом случае из числа последовательно вычитается максимально допустимая степень требуемого основания, умноженная на максимально возможный коэффициент, меньший основания; этот коэффициент и является значащей цифрой числа в новой системе. Например, число 114(10):

 

114 - 26 = 114 – 64 = 50,

50 - 25 = 50 – 32 = 18,

18 - 24 = 2,

2 - 21 = 0.

 

Таким образом, 114(10) = 1110010(2).

 

114 – 1 ∙ 82 = 114 – 64 = 50,

50 – 6 ∙ 81 = 50 – 48 = 2,

2 – 2 ∙ 8° = 2 – 2 = 0.

 

Итак, 114(10)= 162(8).

 


Таблица 1.7 Таблицы сложения и умножения в восьмеричной системе

 

Сложение                                    Умножение

Контрольные вопросы

1. В чем отличие позиционной системы счисления от непозиционной?

2. Каковы способы перевода чисел из одной системы счисления в другую?

3. В чем заключается преимущество использования восьмеричной и шестнадцатиричной систем счисления в вычислительной технике?

4. Как выглядят таблицы сложения и умножения в шестнадцатиричной системе?

КОДИРОВАНИЕ ИНФОРМАЦИИ.

АБСТРАКТНЫЙ АЛФАВИТ

 

Информация передается в виде сообщений. Дискретная информация записывается с помощью некоторого конечного набора знаков, которые будем называть буквами, не вкладывая в это слово привычного ограниченного значения (типа «русские буквы» или «латинские буквы»). Буква в данном расширенном понимании - любой из знаков, которые некоторым соглашением установлены для общения. Например, при привычной передаче сообщений на русском языке такими знаками будут русские буквы - прописные и строчные, знаки препинания, пробел; если в тексте есть числа - то и цифры. Вообще, буквой будем называть элемент некоторого конечного множества (набора) отличных друг от друга знаков. Множество знаков, в котором определен их порядок, назовем алфавитом (общеизвестен порядок знаков в русском алфавите: А, Б,..., Я).

Рассмотрим некоторые примеры алфавитов.

1, Алфавит прописных русских букв:

А Б В Г Д Е Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

2. Алфавит Морзе:

3. Алфавит клавиатурных символов ПЭВМ IBM (русифицированная клавиатура):

4. Алфавит знаков правильной шестигранной игральной кости:

5. Алфавит арабских цифр:

0123456789

6. Алфавит шестнадцатиричных цифр:

0123456789ABCDEF

Этот пример, в частности, показывает, что знаки одного алфавита могут образовываться из знаков других алфавитов.

7. Алфавит двоичных цифр:

0 1

Алфавит 7 является одним из примеров, так называемых, «двоичных» алфавитов, т.е. алфавитов, состоящих из двух знаков. Другими примерами являются двоичные алфавиты 8 и 9:

8. Двоичный алфавит «точка, «тире»:. _

9. Двоичный алфавит «плюс», «минус»: + -

10. Алфавит прописных латинских букв:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

11. Алфавит римской системы счисления:

I V Х L С D М

12. Алфавит языка блок-схем изображения алгоритмов:

13. Алфавит языка программирования Паскаль (см. в главе 3).










Последнее изменение этой страницы: 2018-05-10; просмотров: 312.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...