Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Площадь криволинейного сектора




Площадь криволинейной трапеции

Криволинейной трапецией называется фигура, ограниченная графиком заданной на сегменте [a, b] непрерывной и неотрицательной фукнции f(x), ординатами, проведенными в точках a и b, и отрезком оси Ox между точками a и b (см. Рис. 2).

Докажем следующее утверждение.

Криволинейная трапеция представляет собой квадрируемую фигуру, площадь P которой может быть вычислена по формуле

(1)

Доказательство. Так как непрерывная на сегменте [a, b] функция интегрируема, то для любого положительного числа ε можно указать такое разбиение Tсегмента [a, b], что разность S - s < ε, где S и s - соответственно верхняя и нижняя суммы разбиения T. Но S и s равны соответственно Sd и Si, где Sd и Si - площади ступенчатых фигур (многоугольников), первая из которых содержит криволинейную трапецию, а вторая содержится в криволинейной трапеции (на Рис. 2 изображены также и указанные ступенчатые фигуры). Так как Sd - Si < ε, то, в силу теоремы 1, криволинейная трапеция квадрируема. Поскольку предел при Δ → 0 верхних и нижних сумм равен и sPS, то площадь P криволинейной трапеции может быть найдена по формуле (1).

Замечание. Если функция f(x) непрерывна и неположительна на сегменте [a, b], то значение интеграла равно взятой с отрицательным знаком площади криволинейной трапеции, ограниченной графиком функции f(x), ординатами в точках a и b и отрезком оси Ox между точками a и b. Поэтому, еслиf(x) меняет знак, то равен сумме взятых с определенным знаком площадей криволинейных трапеций, расположенных выше и ниже оси Ox, причем площади первых берутся со знаком +, а вторых со знаком -.

Площадь криволинейного сектора

Пусть кривая L задана в полярной системе координат уравнением r = r(θ), αθβ (см. Рис. 3), причем функция r(θ) непрерывна и неотрицательна на сегменте [α, β]. Плоскую фигуру, ограниченную кривой L и двумя лучами, составляющими с полярной осью углы α и β, будем называть криволинейным сектором.

Докажем следующее утверждение. Криволинейный сектор представляет собой квадрируемую фигуру, площадь P которой может быть вычислена по формуле

(2)

Доказательство. Рассмотрим разбиение T сегмента [α, β] точками α = θ0 < θ1 < ... < θn = β и для каждого частичного сегмента [θi-1, θi] построим круговые секторы, радиусы которых равны минимальному ri и максимальному Ri значениям r(θ) на сегменте [θi-1, θi]. В результате получим две веерообразные фигуры, первая из которых содержится в криволинейном секторе, а вторая содержит криволинейный сектор (эти веерообразные фигуры изображены на Рис. 3). Площади и указанных веерообразных фигур равны соответственно и . Отметим, что первая из этих сумм является нижней суммойs для функции для указанного разбиения T сегмента [α, β], а вторая сумма является верхней суммой S для этой же функции и этого же разбиения. Так как функция интегрируема на сегменте [α, β], то разность может быть как угодно малой. Например, для любого фиксированного ε > 0 эта разность может быть сделана меньше ε/2. Впишем теперь во внутреннюю веерообразную фигуру многоугольник Qi с площадью Si, для которого , и опишем вокруг внешней веерообразной фигуры многоугольник Qd площадью Sd, для которого *. Очевидно, первый из этих многоугольников вписан в криволинейный сектор, а второй описан вокруг него. Так как справедливы неравенства

(3)

то, очевидно, Sd - Si < ε. В силу произвольности ε, отсюда вытекает квадрируемость криволинейного сектора. Из неравенств (3) вытекает справедливость формулы (2).

42 Вопрос:

-

43 Вопрос:

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0. (Для формулы средних прямоугольников равен 1).

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по

1. Формуле левых прямоугольников:

2. Формуле правых прямоугольников:

3. Формуле прямоугольников (средних):

44 Вопрос:

Метод трапеций — метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, то есть линейную функцию. Площадь под графиком функции аппроксимируется прямоугольнымитрапециями. Алгебраический порядок точности равен 1.

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по формуле

Это простое применение формулы для площади трапеции — произведение полусуммы оснований, которыми в данном случае являются значения функции в крайних точках отрезка, на высоту (длину отрезка интегрирования). Погрешность аппроксимации можно оценить через максимум второй производной

Если отрезок разбивается узлами интегрирования и на каждом из элементарных отрезков применяется формула трапеций, то суммирование дастсоставную формулу трапеций

· Метод трапеций быстро сходится к точному значению интеграла для периодических функций, поскольку погрешность за период аннулируется.

· Метод может быть получен путём вычисления среднего арифметического между результатами применения формул правых и левых прямоугольников.

Метод пораболы:

Формула Симпсона (также Ньютона-Симпсона[1]) относится к приёмам численного интегрирования. Получила название в честь британского математикаТомаса Симпсона (1710—1761).

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :

где , и — значения функции в соответствующих точках (на концах отрезка и в его середине).

45 Вопрос:

12.1. Несобственные интегралы по неограниченному промежутку

(несобственные интегралы первого рода).

12.1.1. Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуоси и интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла при называется несобственным интегралом функции f(x) от a до и обозначается .
Итак, по определению, . Если этот предел существует и конечен, интеграл называется сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.
Примеры: 1. ; этот предел не существует; следовательно, исследуемый интеграл расходится.

Признаки сравнения для неотрицательных функций. В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли сходимость интеграла, вычисляя его: если существует конечный предел первообразной при соответствующем стремлении ( или ), то интеграл сходится, в противном случае - расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.
12.1.3.1. Признак сравнения. Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при удовлетворяют неравенствам . Тогда:
если сходится интеграл , то сходится интеграл ;
если расходится интеграл , то расходится интеграл
(эти утверждения имеют простой смысл: если сходится интеграл от большей функции, то сходится интеграл от меньшей функции; если расходится интеграл от меньшей функции, то расходится интеграл от большей функции; в случаях, когда сходится интеграл от меньшей функции или расходится интеграл от большей функции, никаких выводов о сходимости второго интеграла сделать нельзя).
Док-во: если , , то функции и - монотонно возрастающие функции верхнего предела b (следствие свойств аддитивности и интегрирования неравенств). Монотонно возрастающая функция имеет конечный предел тогда и только тогда, когда она ограничена сверху. Пусть сходится. G(b) ограничена , F(b) ограничена, т.е. сходится. Пусть расходится F(b) неограничена G(b) неограничена, т.е. расходится.

Критерий Коши: К. к. сходимости несобственных интегралов: пусть функция f определена на полуинтервале принимает на нем числовые значения и при любом интегрируема (по Риману или по Лебегу) на отрезке [ а, с]. Для того чтобы несобственный интеграл

сходился, необходимо и достаточно, чтобы для любого существовало такое что для всех удовлетворяющих условию выполнялось неравенство

Аналогичным образом критерий формулируется и для несобственных интегралов других типов, а также обобщается на случай, когда функция f зависит от нескольких переменных и ее значения лежат в банаховом пространстве.

46 Вопрос:

Сходящийся ряд называется сходящимся абсолютно, если сходится ряд из модулей , иначе — сходящимся условно.

Аналогично, если несобственный интеграл от функции сходится, то он называется сходящимся абсолютно или условно в зависимости от того, сходится или нет интеграл от ее модуля .

В случае общего нормированного пространства модуль в определении заменяется на норму.

Несобственный интеграл первого рода называется абсолютно сходящимся, если сходится интеграл .

Свойства

из сходимости интеграла вытекает сходимость интеграла .

Для выявления абсолютной сходимости несобственного интеграла первого рода используют признаки сходимости несобственных интегралов первого рода от неотрицательных функций.

Если интеграл расходится, то для выявления условной сходимости несобственного интеграла первого рода могут быть использованы признаки Абеля и Дирихле.

Признак Абеля: Признак Абеля дает достаточные условия сходимости несобственного интеграла.

Признак Абеля для несобственного интеграла I-рода (для бесконечного промежутка). Пусть функции и определены на промежутке . Тогда несобственный интеграл сходится, если выполнены следующие условия:

1. Функция интегрируема на .

2. Функция ограничена и монотонна.

Признак Абеля для несобственного интеграла II-рода (для функций с конечным числом разрывов). Пусть функции и определены на промежутке . Тогда несобственный интеграл сходится если выполнены следующие условия:

1. Функция интегрируема на т.е. сходится интеграл

2. Функция ограничена и монотонна на .

Признак Дирихле: Признак Дирихле — теорема, указывающая достаточные условия сходимости несобственных интегралов и суммируемости бесконечных рядов. Названа в честь немецкого математика Лежёна-Дирихле.

Пусть выполнены условия: · и имеет на ограниченную первообразную , то есть ; · функция ; · . Тогда сходится.

· Очевидно, что вместо второго условия можно также записать .

· Условие монотонности в признаке Дирихле существенно.

Однако, условие монотонности не является необходимым.

— сходится.

· Условие ограниченности первообразной в признаке Дирихле также является существенным, но не является необходимым.

· Условная сходимость: Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из абсолютных величин его членов, расходится. То есть, если существует (и не бесконечен), но .

· Если ряд условно сходится, то ряды, составленные из его положительных и отрицательных членов, расходятся.

· Путём изменения порядка членов условно сходящегося ряда можно получить ряд, сходящийся к любой наперёд заданной сумме или же расходящийся (теорема Римана).

· При почленном умножении двух условно сходящихся рядов может получиться расходящийся ряд.

47 Вопрос:

Если функция не ограничена на промежутке интегрирования и промежуток интегрирования конечен, то определенный интеграл является несобственным интегралом второго рода.

1. Пусть функция y = f(x) определена и непрерывна на [a,b) и в точке b функция не ограничена.

.

Если предел, стоящий справа, существует и конечен, то несобственный интеграл называется сходящимся и равен значению этого предела, в противном случае интеграл называется расходящимся.

Если оба предела, стоящие в правой части, существуют и конечны, то несобственный интеграл называется сходящимся и он равен сумме этих пределов, в противном случае – расходящимся.

Замечание 1. Несобственные интегралы могут быть комбинированного типа: первого и второго рода; или второго рода с несколькими точками разрыва второго рода.

Замечание 2. Если функция на отрезке интегрирования терпит разрыв первого рода в точке с, то определенный интеграл от нее по этому отрезку не является несобственным, т.е. его можно свести к сумме двух обычных определенных интегралов.

.

49 Вопрос:

Повт. Предел: Для функции нескольких переменных можно определить понятие предела по одной из переменных при фиксированных значениях остальных переменных. В связи с этим возникает понятие повторного предела.

Пусть функция n переменных u = f(x) = f(x1, x2, … , xn) определена в некоторой окрестности точки
a = (a1, a2, … , an) Î Rn , за исключением, быть может, самой точки a.

Определение 1. Число A называется пределом функции f(x) в точке a = (a1, a2, … , an), если

"ε > 0 $δ ε > 0 : x Î Oδ(a) Þ |f(x) − A| < ε

Обозначение:

lim
xa

f(x) = A.

В пространстве R2 предел функции f(x,y) в точке a(a1, a2) принято обозначать следующим образом:

lim
xa1 ya2

f(x, y) = A. или

lim
xa1 ya2

f(x, y) = A.


Замечания.

1. Определение предела функции n переменных в точности совпадает с определением предела функции одной переменной, только окрестность точки a теперь не интервал (aδ,a + δ), а n–мерный открытый шар

(x1a1)2 + (x2a2)2 + … + (xnan)2 < δ2.

2. Если a — граничная точка области определения D(f) функции f, то определение предела уточняется следующим образом (аналогично понятию одностороннего предела функции одной переменной):

"ε >0 $δε > 0: x Î Oδ(a) ∩ D(f) Þ |f(x) − A|<ε.

Теорема 1. Пусть функции n переменных f(x) и g(x), определены в области D Ì Rn и для некоторой точки a

lim
xa

f(x) = A и

lim
xa

g(x) = B.

Тогда

lim
xa

[f(x) + g(x)] = A + B,

lim
xa

f(x) · g(x) = A · B, и при B ≠ 0

lim
xa

 

f(x)
g(x)

=

A
B

.

Теорема доказывается так же, как для функции одной переменной.

Определение 2. Функция f(x) называется бесконечно малой в точке a, если

lim
xa

f(x) = 0.

Определения и теоремы о бесконечно малых функций одной переменной справедливы для бесконечно малых функций нескольких переменных.

Вопрос:

-

51 Вопрос:

В математическом анализе, частная производная — одно из обобщений понятия производной на случай функции нескольких переменных.

В явном виде частная производная функции определяется следующим образом:

Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где — частный дифференциал функции по переменной . Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении . (подробнее см. Фихтенгольц, «Курс дифференциального и интегрального исчисления»).

Геометрически, частная производная является производной по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -ом месте.

52 Вопрос:

Цепное правило (правило дифференцирования сложной функции) позволяет вычислить производную композиции двух и более функций на основе индивидуальных производных. Если функция f имеет производную в точке , а функция g имеет производную в точке , то сложная функция h(x) = g(f(x)) также имеет производную в точке .

Пусть даны функции, определённые в окрестностях на числовой прямой, где и Пусть также эти функции дифференцируемы: Тогда их композиция также дифференцируема: и её производная имеет вид:

Замечание[править]

В обозначениях Лейбница цепное правило для вычисления производной функции где принимает следующий вид:

Инвариантность формы первого дифференциала[править]

Дифференциал функции в точке имеет вид:

где — дифференциал тождественного отображения :

Пусть теперь Тогда , и согласно цепному правилу:

Таким образом, форма первого дифференциала остаётся одной и той же вне зависимости от того, является ли переменная функцией или нет.

Пусть Тогда функция может быть записана в виде композиции где

Дифференцируя эти функции отдельно:

получаем

В математическом анализе, производная по направлению — это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию от аргументов в окрестности точки . Для любого единичного вектора определим производную функции в точке по направлению следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

Связь с градиентом

Производную по направлению дифференцируемой по совокупности переменных функции можно рассматривать как проекцию градиента функции на это направление, или иначе, как скалярное произведение градиента на орт направления:

,

где — орт направления. Отсюда следует, что максимальное значение в точке производная по направлению принимает, если направление совпадает с направлением градиента функции в данной точке. Также видно, что значение производной по направлению не зависит от длины вектора .

53 Вопрос:

Для вычисления дифференциалов высших порядков используется следующая символическая формула:

Пример 8. z=y•lnx. Найти

Найдем частные производные . Дифференцируя повторно, получим

Пример 9. z=x2•y. Найти d3z

Найдем частные производные

Подставив найденные частные производные в формулу для вычисления d3z, получим:

d3z=0•dx3+3•2•dx2dy+3•0•dx2dy+0•dy3=6dx2dy

Теорема: Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных

Определение смешанной производной[править]

Пусть дана достаточно гладкая (скалярная) функция многих переменных:

Мы можем взять частную производную этой функции по одному из аргументов , считая остальные аргументы постоянными параметрами. В результате мы получим новую функцию:

Эта новая функция тоже зависит от остальных аргументов, как от параметров. То есть численное значение в общем случае зависит от тех же переменных , что и оригинальная функция :

Если функция окажется достаточно гладкой, то мы можем и её продифференцировать, взяв частную производную по тому же самому, или по другому аргументу :

Если , то выражение в правой части равенства (4) называется смешанной производной.

Основа теоремы[править]

Для достаточно гладкой функции многих переменных значение смешанной производной не зависит от порядка дифференцирования:

Теорема является базовой в теории функций многих переменных и широко применяется в математической физике, теории дифференциальных уравнений в частных производных, дифференциальной геометрии.

54 Вопрос:

Дифференциалом порядка n, где n > 1, от функции в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n — 1), то есть

.

Дифференциал высшего порядка функции одной переменной[править]

Для функции, зависящей от одной переменной второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n-го порядка от функции :

При вычислении дифференциалов высших порядков очень важно, что есть произвольное и не зависящее от , которое при дифференцировании по следует рассматривать как постоянный множитель.

Дифференциал высшего порядка функции нескольких переменных[править]

Если функция имеет непрерывные частные производные второго порядка, то дифференциал второго порядка определяется так: .

Символически общий вид дифференциала n-го порядка от функции выглядит следующим образом:

где , а произвольные приращения независимых переменных .
Приращения рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему. Сложность выражения дифференциала возрастает с увеличением числа переменных.

· С помощью дифференциалов, функция при условии существования её (n + 1) первых производных может быть представлена по формуле Тейлора:

· для функции с одной переменной:

, ;

· для функции с несколькими переменными:

,

· Если первый дифференциал равен нулю, а второй дифференциал функции явлется положительно определённым (отрицательно определенным), то точка является точкой строгого минимума (соответственно строгого максимума); если же второй дифференциал функции является неопределённым, то в точке нетэкстремума.

55 Вопрос:

Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).

Пусть дана функция и — внутренняя точка области определения Тогда

· называется точкой локального максимума функции если существует проколотая окрестность такая, что

· называется точкой локального минимума функции если существует проколотая окрестность такая, что

Если неравенства выше строгие, то называется точкой строгого локального максимума или минимума соответственно.

· называется точкой абсолютного (глобального) максимума, если

· называется точкой абсолютного минимума, если

Значение функции называют (строгим) (локальным) максимумом или минимумом в зависимости от ситуации. Точки, являющиеся точками (локального) максимума или минимума, называются точками (локального) экстремума.

Необходимые условия существования локальных экстремумов [править]

· Из леммы Ферма вытекает следующее:

Пусть точка является точкой экстремума функции , определенной в некоторой окрестности точки .

Тогда либо производная не существует, либо .

(Математический Анализ. Том 1. Л. Д. Кудрявцев. Москва «Высшая Школа» 1973 г.)

Достаточные условия существования локальных экстремумов [править]

· Пусть функция непрерывна в и существуют конечные или бесконечные односторонние производные . Тогда при условии

является точкой строгого локального максимума. А если

то является точкой строгого локального минимума.

Заметим, что при этом функция не дифференцируема в точке

· Пусть функция непрерывна и дважды дифференцируема в точке . Тогда при условии

и

является точкой локального максимума. А если

и

то является точкой локального минимума.

· Пусть функция дифференцируема раз в точке и , а .

Если чётно и , то - точка локального максимума. Если чётно и , то - точка локального минимума. Если нечётно, то экстремума нет.

56 Вопрос:

Теорема о неявной функции — общее название для теорем, гарантирующих локальное существование и описывающих свойства неявной функции, т. е. функции

, ,

заданной уравнением

,

и значение фиксированно.

Простейшая теорема о неявной функции состоит в следующем.

Если функция · непрерывна в некоторой окрестности точки · и · при фиксированном x функция F(x,y) строго монотонна по y в данной окрестности, тогда найдётся такой двумерный промежуток , являющийся окрестностью точки , и такая непрерывная функция , что для любой точки


Обычно дополнительно предполагается, что функция непрерывно дифференцируема, в этом случае условие монотонности следует из того, что , здесь обозначаетчастную производную по . Более того, в этом случае производная функции может быть вычислена по формуле

57 Вопрос:










Последнее изменение этой страницы: 2018-06-01; просмотров: 298.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...