Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема: Математическое и физическое моделирование в теплоэнергетике. Процесс разработки и использования математических моделей.




План:Основные понятия математического и физического моделирования. Аналоговое моделирование. Процесс разработки и использования математических моделей. Методы и средства ускорения моделирования. Использование системного анализа при моделировании.

 

В дальнейшем будем рассматривать физическое моделированиеи аналоговое -из предметного, математическое моделирование-из знакового.

Введем ряд определений.

Математическая модель –приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики.

Математическое моделирование - процесс изучения явления с помощью математической модели.

Процесс математического моделирования можно подразделить на четыре этапа:

первый - формулирование законов, связывающих основные объекты модели, результат - запись в математических терминах сформулированных качественных представлений о связях между объектами модели;

второй – исследование математических задач, к которым приводят математические модели, основной вопрос – решение прямой задачи – получение в результате анализа модели выходных данных (теоретических следствий) для сопоставления их с результатами наблюдений изучаемых явлений;

третий - выяснение того соответствует ли принятая модель (гипотетичная) критерию практики, т.е. выяснение вопроса о том, согласуется ли результат наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Задачи, в которых определяются характеристики модели таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений – обратная задача;

четвертый – последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели.

Метод математического моделирования занимает ведущее место среди других методов исследования.

Физическое моделирование –экспериментальный метод научного исследования, состоящий в замене изучаемого физического процесса, явления или объекта другим, ему подобным – моделью. Геометрически подобная оригиналу модель имеет увеличенный или уменьшенный по сравнению с оригиналом размер. Модель может отличаться от реального процесса или явления количественными физическими характеристиками.

В основе физического моделирования лежит теория подобия и анализ размерностей.

Кроме прямого физического моделирования при исследовании различных физических процессов используются различные аналогии, позволяющие на основе однотипности математических уравнений, описывающих различные физические процессы, заменять изучение исследуемого процесса изучением другого процесса.

Например, при моделировании процессов теплообмена используется электротепловая аналогия, в которой исследуемое поле температур заменяется полем электрического потенциала в контуре CR (С- электрическая емкость, R-омическое сопротивление) .

При физическом моделировании сохраняется физическая природа исследуемого объекта. В случае моделирования аналогиями модель воспроизводит иное физическое явление, отличное по своей природе от натурного, но описываемого теми же уравнениями. Метод аналогий основан на формальной идентичности дифференциальных уравнений, описывающих различные по своей физической природе процессы (проявление единства природы).

На существование электрогидродинамической аналогии (ЭГДА) указывал еще Г.Кирхгоф в 1845 г. Метод ЭГДА основан на аналогии уравнений движения электрическоготока и уравнений потенциального течения жидкости. Метод магнитогазодинамической аналогии (МАГА) использует аналогию между уравнениями магнитного поля и уравнениями потенциального течения газа. Газогидравлическая аналогия (ГГА) основана на аналогии между уравнениями движения невязкой несжимаемой жидкости в открытом канале и уравнениями плоского потенциального движения газа. Ни один из указанных методов аналогий не позволяет моделировать силы вязкости. Электротепловая аналогия основана на замене поля температурполем электрического потенциала в CRконтуре, аналогом коэффициента температуропроводности является величина 1/CR. Гидротепловая аналогия дает возможность моделирования процессов стационарной теплопроводности на аналогии с безвихревым потоком идеальной жидкости.

Начало практическому применению метода ЭГДА к решению задач, связанных с движением жидкости было положено Д.Тома, который применил метод ЭГДА при изучении движения воды в направляющем аппарате колеса гидротурбины. В качестве электропроводного материала он использовал листы константана, в которых вырезались исследуемые решетки профилей направляющих аппаратов гидротурбин. Листы зажимались в медных шинах, к которым подводился электрический ток (постоянный). Широкое применение метод ЭГДА получил для решения задач обтекания турбинных и компрессорных решеток. На установке ЭГДА может быть непосредственно исследовано обтекания тел поступательно-циркуляционным потоком. Для решения практически важных задач необходимо уметь определять значение скоростей и давлений не только в контуре профиля, но и в любой точке исследуемой области поступательно-циркуляционного потока. Аналитическое решение такой задачи для одиночного профилятребует чрезвычайно сложных и громоздких вычислений. Для решетки профилей аналитическое решение подобной задачи неизвестно. Поэтому можно воспользоваться методом ЭГДА. Этим методом решались задачи обтекания тел плоским потоком сжимаемого газа с дозвуковой скоростью (используется электролитическая ванна с переменной глубиной электролита), нелинейные задачи газодинамики, обтекания крылового профиля, движения трехмерных потоков несжимаемой
жидкости в проточной части турбомашин. Широкое применение нашел метод электрогидродинамической аналогии в вихревых полях (ВЭГА).

 

Для установления аналогов рассмотрим уравнения движения электрических зарядов в проводниках:











Последнее изменение этой страницы: 2018-06-01; просмотров: 167.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...