Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Моделирование в условиях определенности
Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять продукцию клиентам равномерными партиями в количестве N =24000 единиц в год. Срыв поставок недопустим, так как штраф за это можно считать бесконечно большим. Запускать в производство приходится сразу всю партию, таковы условия технологии. Стоимость хранения единицы продукции Cx=10 копеек в месяц, а стоимость запуска одной партии в производство (независимо от ее объема) составляет Cp =400 гривен. Таким образом, запускать в год много партий явно невыгодно, но невыгодно и выпустить всего 2 партии в год — слишком велики затраты на хранение! Где же “золотая середина”, сколько партий в год лучше всего выпускать? Будем строить модель такой системы. Обозначим через n размер партии и найдем количество партий за год — p = N / n 24000 / n. Получается, что интервал времени между партиями составляет t = 12 / p (месяцев), а средний запас изделий на складе — n/2 штук. Сколько же нам будет стоить выпуск партии в n штук за один раз? Сосчитать нетрудно — 0.1 · 12 · n / 2 гривен на складские расходы в год и 400 p гривен за запуск партий по n штук изделий в каждой. В общем виде годовые затраты составляют E = T n / 2 + N / n {3 - 2} где T = 12 — полное время наблюдения в месяцах. Перед нами типичная вариационная задача: найти такое n0, при котором сумма E достигает минимума. Решение этой задачи найти совсем просто — надо взять производную по n и приравнять эту производную нулю. Это дает n0 = , {3 - 3} что для нашего примера составляет 4000 единиц в одной партии и соответствует интервалу выпуска партий величиной в 2 месяца. Затраты при этом минимальны и определяются как E0 = , {3 - 4} что для нашего примера составляет 4800 гривен в год. Сопоставим эту сумму с затратами при выпуске 2000 изделий в партии или выпуске партии один раз в месяц (в духе недобрых традиций социалистического планового хозяйства): E1= 0.1·12·2000/2 + 400·24000/ 2000 = 6000 гривен в год. Комментарии, как говорится, — излишни! Конечно, так просто решать задачи выработки оптимальных стратегий удается далеко не всегда, даже если речь идет о детерминированных данных для описания жизни системы — ее модели. Существует целый класс задач системного анализа и соответствующих им моделей систем, где речь идет о необходимости минимизировать одну функции многих переменных следующего типа: E = a1 X1 + a2 X2 + ..... an Xn {3 - 5} где Xi — искомые переменные, ai — соответствующие им коэффициенты или “веса переменных” и при этом имеют место ограничения как на переменные, так и на их веса. Задачи такого класса достаточно хорошо исследованы в специальном разделе прикладной математики — линейном программировании. Еще в докомпьютерные времена были разработаны алгоритмы поиска экстремумов таких функций E = f(a,X), которые так и назвали — целевыми. Эти алгоритмы или приемы используются и сейчас — служат основой для разработки прикладных компьютерных программ системного анализа. Системный подход к решению практических задач управления экономикой, особенно для задач со многими десятками сотен или даже тысячами переменных привел к появлению специализированных, типовых направлений как в области теории анализа, так и в практике. Наиболее “старыми” и, следовательно, наиболее обкатанными являются методы решения специфичных задач, которые давно уже можно называть классическими. Специалистам в области делового администрирования надо знать эти задачи хотя бы на уровне постановки и, главное, в плане моделирования соответствующих систем. · Задачи управления запасами Первые задачи управления запасами были рассмотрены еще в 1915 году — задолго не только до появления компьютеров, но и до употребления термина “кибернетика”. Был обоснован метод решения простейшей задачи — минимизация затрат на заказ и хранение запасов при заданном спросе на данную продукцию и фиксированном уровне цен. Решение — размер оптимальной партии обеспечивало наименьшие суммарные затраты за заданный период времени. Несколько позже были построены алгоритмы решения задачи управления запасами при более сложных условиях — изменении уровня цен (наличие “скидок за качество” и / или “скидок за количество”); необходимостиучета линейных ограничений на складские мощности и т. п. · Задачи распределения ресурсов В этих задачах объектом анализа являются системы, в которых приходится выполнять несколько операций с продукцией (при наличии нескольких способов выполнения этих операций) и, кроме того, не хватает ресурсов или оборудования для выполнения всех этих операций. Цель системного анализа — найти способ наиболее эффективного выполнения операций с учетом ограничений на ресурсы. Объединяет все такие задачи метод их решения — метод математического программирования, в частности, — линейного программирования. В самом общем виде задача линейного программирования формулируется так: требуется обеспечить минимум выражения (целевой функции) E(X) = C1 X1 + C2 X2 + ......+ Ci Xi + ... Cn Xn {3 - 6} при следующих условиях: все Xi положительны и, кроме того, на все Xi налагаются mограничений (m < n) A11·X1 + A12·X2 + ......+ Aij·Xj + ... A1n·Xn = B1; ..................................................................................... Ai1·X1 + Ai2·X2 + ......+ Aij·Xj + ... Ain·Xn = Bi; {3 - 7} ..................................................................................... Am1·X1 + Am2·X2 + .....+ Amj·Xj+ ... Amn·Xn = Bm . Начала теоретического обоснования и разработки практических методов решения задач линейного программирования были положены Д.Данцигом (по другой версии — Л.В.Канторовичем). Для большинства конкретных приложений универсальным считается т. н. симплекс-метод поиска цели, для него и смежных методов разработаны специальные пакеты прикладных программ (ППП) для компьютеров.
|
|||||
Последнее изменение этой страницы: 2018-04-12; просмотров: 467. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |