Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Экспериментальная психология 12 страница




В общем случае план для двух независимых переменных выглядит как N х М. Применимость таких планов ограничивается только необходимостью набора боль­шого числа рандомизированных групп. Объем экспериментальной работы чрезмер­но возрастает с добавлением каждого уровня любой независимой переменной.

Планы, используемые для исследования влияния более двух независимых пере­менных, применяются редко. Для трех переменных они имеют общий вид L х М х N.

Чаще всего применяются планы 2х2х2: «три независимые переменные — два уровня». Очевидно, добавление каждой новой переменной увеличивает число групп. Общее их число 2, где п — число переменных в случае двух уровней интенсивности и К — в случае К-уровневой интенсивности (считаем, что число уровней одинаково для всех независимых переменных). Примером этого плана может быть развитие предыдущего. В случае, когда нас интересует успешность выполнения эксперимен­тальной серии заданий, зависящая не только от общей стимуляции, которая произ­водится в форме наказания — удара током, но и от соотношения поощрения и нака­зания, мы применяем план 3х3х3.

Таблица 5.9

    L1 L2 L3
М1 A1 В2 С3
М2 В2 С3 А1
м3 С3 А1 В2

 

Упрощением полного плана с тремя независимыми переменными вида L х М х N является планирование по методу «латинского квадрата». «Латинский квадрат» применяют тогда, когда нужно исследовать одновременное влияние трех перемен­ных, имеющих два уровня или более. Принцип «латинского квадрата» состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым процедура значительно упрощается, не говоря о том, что экспе­риментатор избавляется от необходимости работать с огромными выборками.

Предположим, что у нас есть три независимые переменные, с тремя уровнями каждая:

1. L1,L2,L3

2. М123

3. А, В, С

План по методу «латинского квадрата» представлен в табл. 5.9.

Такой же прием используется для контроля внешних переменных (контрбалан­сировка). Нетрудно заметить, что уровни третьей переменной N (А, В, С,) встреча­ются в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных.

«Латинский квадрат» позволяет значительно сократить число групп. В частно­сти, план 2х2х2 превращается в простую таблицу (табл. 5.10).

Применение латинских букв в клеточках для обозначения уровней 3-й перемен­ной (А — есть, В — нет) традиционно, поэтому метод назван «латинский квадрат».

Более сложный план по методу «греко-латинского квадрата» применяется очень редко. С его помощью можно исследовать влияние на зависимую переменную четырех независимых. Суть его в следующем: к каждой латинской группе плана с тремя переменными присоединяется греческая буква, обозначающая уровни четвер­той переменной.

Рассмотрим пример. У нас четыре переменные, каждая из которых имеет три уровня интенсивности. План по методу «греко-латинского квадрата» примет такой вид (табл. 5.11).

Для обработки данных применяется метод дисперсионного анализа по Фишеру. Методы «латинского» и «греко-латинского» квадрата пришли в психологию из агро­биологии, но большого распространения не получили. Исключением являются не­которые эксперименты в психофизике и психологии восприятия.

Главная проблема, которую удается решить в факторном эксперименте и невоз­можно решить, применяя несколько обычных экспериментов с одной независимой переменной, — определение взаимодействия двух переменных.

Таблица 5.10

2-я переменная

1-я переменная

Есть Нет
Есть А В
Нет В А

 

Таблица 5.11

    L1 L2 L3
М1 Аa Вb Сg
М2 Вb Сg Аa
М3 Сg Аa Вb

 


Рассмотрим возможные результаты простейшего факторного эксперимента 2х2 с позиций взаимодействий переменных. Для этого нам надо представить результаты опытов на графике, где по оси абсцисс отложены значения первой независимой пе­ременной, а по оси ординат — значения зависимой переменной. Каждая из двух пря­мых, соединяющих значения зависимой переменной при разных значениях первой независимой переменной (А), характеризует один из уровней второй независимой переменной (В). Применим для простоты результаты не экспериментального, а кор­реляционного исследования. Условимся, что мы исследовали зависимость статуса ребенка в группе от состояния его здоровья и уровня интеллекта. Рассмотрим вари­анты возможных отношений между переменными.

Первый вариант: прямые параллельны — взаимодействия переменных нет (рис. 5.1).

Больные дети имеют более низкий статус, чем здоровые, независимо от уровня интеллекта. Интеллектуалы имеют всегда более высокий статус (независимо от здо­ровья).

Второй вариант: физическое здоровье при наличии высокого уровня интеллекта увели­чивает шанс получить более высокий статус в группе(рис 5.2).

В этом случае получен эффект расходяще­гося взаимодействия двух независимых пере­менных. Вторая переменная усиливает влия­ние первой на зависимую переменную.

Третий вариант: сходящееся взаимо­действие — физическое здоровье уменьшает шанс интеллектуала приобрести более высо­кий статус в группе. Переменная «здоровье» уменьшает влияние переменной «интеллект» на зависимую переменную. Есть и другие случаи этого варианта взаимодействия:

переменные взаимодействуют так, что увеличение значения первой приводит к уменьшению влияния второй с изменением знака зависимости (рис. 5.3).

У больных детей, обладающих высоким уровнем интеллекта, меньше шанс полу­чить высокий статус, чем у больных детей с низким интеллектом, а у здоровых — связь интеллекта и статуса позитивная.

Теоретически возможно представить, что больные дети будут иметь больший шанс получить высокий статус при высоком уровне интеллекта, чем их здоровые низкоинтеллектуальные сверстники.

Последний, четвертый, возможный вариант наблюдаемых в исследованиях отно­шений между независимыми переменными: случай, когда между ними существует пересекающееся взаимодействие, представленное на последнем графике (рис. 5.4).

Итак, возможны следующие взаимодействия переменных: нулевое; расходя­щееся (с различными знаками зависимости); пересекающееся.

Оценка величины взаимодействия проводится с помощью дисперсионного ана­лиза, а t-критерий Стьюдента используется для оценки значимости различий груп­повых `X. 

Во всех рассмотренных вариантах планирования эксперимента применяется спо­соб балансировки: различные группы испытуемых ставятся в разные эксперимен­тальные условия. Процедура уравнивания состава групп позволяет производить сравнение результатов.

Однако во многих случаях требуется планировать эксперимент так, чтобы все его участники получили все варианты воздей­ствия независимых переменных. Тогда на по­мощь приходит техника контрбалансировки.

Планы, в которых воплощается стратегия «все испытуемые — все воздействия», Мак-Колл [McCall W. А., 1923] называет ротацион­ными экспериментами, а Кэмпбелл — «сба­лансированными планами». Чтобы не было путаницы между понятиями «балансировка» и «контрбалансировка», будем использовать термин «ротационный план».

Ротационные планы строятся по методу «латинского квадрата», но, в отличие от рассмотренного выше примера, по строкам обозначены группы испытуемых, а не уровни переменной, по столбцам — уровни воздействия первой независимой пере­менной (или переменных), в клеточках таблицы — уровни воздействия второй не­зависимой переменной.

Пример экспериментального плана для 3 групп (А, B, С) и 2 независимых пере­менных (X,Y) с 3 уровнями интенсивности (1-й, 2-й, 3-й) приводим ниже. Нетрудно заметить, что этот план можно переписать и так, чтобы в клеточках сто­яли уровни переменной Y (табл. 5.12).

Кэмпбелл включает этот план в число квазиэкспериментальных на основании того, что неизвестно, контролируется ли с его помощью внешняя валидность. Дей­ствительно, вряд ли в реальной жизни испытуемый может получить серию таких воздействий,как в эксперименте.

Что касается взаимодействия состава групп с другими внешними переменными, источниками артефактов, то рандомизация групп, согласно утверждению Кэмпбелла, должна минимизировать влияние этого фактора.

Суммы по столбцам в ротационном плане свидетельствуют о различиях в уровне эффекта при разных значениях одной независимой переменной (X или Y), а суммы по строкам должны характеризовать различия между группами. Если группы рандомизированы удачно, то межгрупповых различий быть не должно. Если же состав группы является дополнительной переменной, возникает возможность ее проконт­ролировать. Схема контрбалансировки не позволяет избежать эффекта тренировки, хотя данные многочисленных экспериментов с применением «латинского квад­рата» не позволяют делать такой вывод.

Таблица 5.12

Группа

Уровни 1-й переменной

X1 X2 X3
А Y1 Y2 Y3
В Y2 Y3 Y1
С Y3 Y1 Y2

 

Подводя итог рассмотрению различных вариантов экспериментальных планов, предлагаем их классификацию. Экспериментальные планы различаются по таким основаниям:

1. Число независимых переменных: одна или больше. В зависимости от их числа применяется либо простой, либо факторный план.

2. Число уровней независимых переменных: при 2 уровнях речь идет об установле­нии качественной связи, при 3 и более — количественной связи.

3. Кто получает воздействие. Если применяется схема «каждой группе — своя ком­бинация», то речь идет о межгрупповом плане. Если же применяется схема «все группы — все воздействия», то речь идет о ротационном плане. Готтсданкер на­зывает его кросс-индивидуальным сравнением.

Схема планирования эксперимента может быть гомогенной или гетерогенной (в зависимости от того, равно или не равно число независимых переменных числу уровней их изменения).

5.1.4 Планы экспериментов для одного испытуемого

Эксперименты на выборках с контролем переменных — ситуация, которую широкого стали использовать в психологии с 1910-1920-х гг. Особое рас­пространение экспериментальные исследования на уравненных группах получили после создания выдающимся биологом и математиком Р. А. Фишером теории пла­нирования экспериментов и обработки их результатов (дисперсионный и ковариа­ционный анализы). Но психологи применяли эксперимент задолго до появления тео­рии планирования исследования выборок. Первые экспериментальные исследова­ния проводились с участием одного испытуемого — им являлся сам эксперимента­тор либо его ассистент. Начиная с Г. Фехнера (1860), в психологию пришла техника экспериментирования для проверки теоретических количественных гипотез.

Классическим экспериментальным исследованием одного испытуемого стала ра­бота Г. Эббингауза, которая была проведена в 1913 г. Эббингауз исследовал явле­ние забывания с помощью заучивания бессмысленных слогов (изобретенных им же). Он заучивал серию слогов, а затем пытался их воспроизвести через определенное время. В итоге была получена классическая кривая забывания: зависимость объема сохраненного материала от времени, прошедшего с момента заучивания (рис. 5.5).

В эмпирической научной психологии взаимодействуют и борются три исследо­вательские парадигмы. Представители одной из них, традиционно идущей от есте­ственнонаучного эксперимента, считают единственно достоверным знанием только то, которое добывается в экспериментах на эквивалентных и репрезентативных вы­борках. Основной аргумент сторонников этой позиции — необходимость контроля внешних переменных и нивелирования индивидуальных различий для нахождения общих закономерностей.

Представители методологии «экспериментального анализа поведения» критику­ют сторонников статистического анализа и планирования экспериментов на выбор­ках. По их мнению, нужно проводить исследования с участием одного испытуемого и с применением определенных стратегий, которые позволят в ходе эксперимента редуцировать источ­ники артефактов. Сторонниками этой методологии являются такие известные исследователи, как Б. Ф. Скиннер, Г. А. Мюррейидр.

Наконец, классическое идиографическое исследование проти­вопоставляется как эксперимен­там с участием одного испытуемо­го, так и планам, изучающим пове­дение в репрезентативных выбор­ках. Идиографическое исследова­ние предусматривает изучение индивидуальных случаев: биогра­фий или особенностей поведения отдельных людей. Примером являются замеча­тельные работы Лурии «Потерянный и возвращенный мир» и «Маленькая книжка о большой памяти».

Во многих случаях исследования, проводимые с участием одного испытуемого, являются единственно возможным вариантом. Методология исследования одного испытуемого разрабатывалась в 1970—1980-е гг. многими авторами: А. Кезданом, Т. Кратохвиллом, Б. Ф. Скиннером, Ф.-Дж. МакГиганом и др.

В ходе эксперимента выявляются два источника артефактов: а) ошибки в страте­гии планирования и в проведении исследования; б) индивидуальные различия.

Если создать «правильную» стратегию проведения эксперимента с одним испы­туемым, то вся проблема сведется лишь к учету индивидуальных различий. Экспе­римент с одним испытуемым возможен тогда, когда: а) индивидуальными различия­ми можно пренебречь в отношении переменных, изучаемых в эксперименте, все ис­пытуемые признаются эквивалентными, поэтому возможен перенос данных на каждого члена популяции; б) испытуемый уникален, и проблема прямого переноса данных неактуальна.

Стратегия экспериментирования с одним испытуемым разработана Скиннером для исследования процесса обучения. Данные в ходе исследования представляются в форме «кривых обучения» в системе координат «время» — «общее число ответов» (кумулятивная кривая). Кривая обучения первоначально анализируется визуально; рассматриваются ее изменения во времени. Если функция, описывающая кривую, изменяется при изменении воздействия А на В, то это может свидетельствовать о наличии причинной зависимости поведения от внешних воздействий или В).

Исследование по схеме «один испытуемый» (single-subject research) называется также планированием временных серий. Основным показателем влияния независи­мой переменной на зависимую при реализации такого плана является изменение характера ответов испытуемого от воздействия на него изменения условий экспери­мента во времени. Существует ряд основных схем применения этой парадигмы. Про­стейшая стратегия — схема А—В. Испытуемый первоначально выполняет деятель­ность в условиях А, а затем — в условиях В (см. рис. 5.8).

При использовании этого плана возникает закономерный вопрос: а сохранила бы кривая ответов прежний вид, если бы не было воздействия? Проще говоря, эта схема не контролирует эффект плацебо. Кроме того, неясно, что привело к эффекту: может быть, воздействие оказала не переменная В, а какая-либо иная переменная, не учтенная в эксперименте.

Поэтому чаще применяется другая схема: А—В—А. Первоначально регистриру­ется поведение испытуемого в условиях А, затем условия изменяются (В), а на тре­тьем этапе происходит возвращение прежних условий (А). Изучается изменение функциональной связи между независимой и зависимой переменными. Если при из­менении условий на третьем этапе восстанавливается прежний вид функциональ­ной зависимости между зависимой и зависимой переменными, то независимая пе­ременная считается причиной, которая может модифицировать поведение испытуе­мого (рис. 5.9).

Однако и первый, и второй варианты планирования временных серий не позво­ляют учесть фактор кумуляции воздействий. Возможно, к эффекту приводит соче­тание — последовательность условий и В). Неочевидно и то, что после возврата к ситуации В кривая примет тот же вид, каким он был при первом предъявлении условий В.

Примером плана, который дважды воспроизводит один и тот же эксперименталь­ный эффект, является схема А—В—А—В. Если при 2-м переходе от условий А к условиям В будет воспроизведено изменение функциональной зависимости отве­тов испытуемого от времени, то это станет доказательством экспериментальной ги­потезы: независимая переменная (А, В) влияет на поведение испытуемого.

Рассмотрим простейший случай. В качестве зависимой переменной выберем об­щий объем знаний студента. В качестве независимой — занятия физкультурой по утрам (например, гимнастикой у-шу). Предположим, что комплекс у-шу благопри­ятно влияет на общее психическое состояние студента и способствует лучшему за­поминанию (рис. 5.10).

Очевидно, что занятие гимнастикой благоприятно отразилось на обучаемости.

Существуют различные варианты планирования по методу временных серий. Различают схемы регулярного чередования серий (АВ-АВ), серии стохастических последовательностей и схемы позиционного уравнивания (пример: АВВА). Моди­фикациями схемы А—В—А—В являются схема А—В—А—В—А или более дли­тельная: А— В— А— В— А— В— А.

Применение более «длинных» временных планов увеличивает гарантию обнару­жения эффекта, но приводит к утомлению испытуемого и другим кумулятивным эф­фектам.

Кроме того, план А—В—А—В и его различные модификации не снимают три важ­нейшие проблемы:

1. Что было бы с испытуемым, если бы никакого воздействия не было (эффект плацебо)?

2. Не является ли последовательность воздействий А—В сама по себе еще одним воздействием (побочной переменной)?

3. Какая причина привела к эффекту: если на месте В не было бы воздействия, по­вторился бы эффект?

Для контроля эффекта плацебо в серию А—В—А—В включают условия, «имити­рующие» либо воздействие А, либо воздействие В. Рассмотрим решение последней проблемы. Но сначала проанализируем такой случай: допустим, студент постоянно занимается у-шу. Но периодически на стадионе или в спортивном зале появляется симпатичная девушка (просто зритель) — воздействие В. План А— В— А— В выявил повышение эффективности учебных занятий студента в периоды появления пере­менной В. Что является причиной: присутствие зрителя как такового или конкретной симпатичной девушки? Для проверки гипотезы о наличии конкретной причины эксперимент строится по следующей схеме: А—В—А—С—А. Например, в четвер­тый временной период на стадион приходит другая девушка или скучающий пенсио­нер. Если эффективность занятий значительно снизится (не та мотивация), то это будет свидетельствовать о конкретной причине ухудшения обучаемости. Возможен и вариант проверки воздействия условия А (занятия у-шу без зрителей). Для этого надо применить план А—В—С—В. Пусть студент какое-то время в отсутствие де­вушки прекратит занятия. Если же повторное появление ее на стадионе приведет к тому же эффекту, что и в первый раз, то причина повышения успеваемости — в ней, а не только в занятиях у-шу (рис. 5.11).

Прошу не принимать пример всерьез. В действительности происходит как раз все наоборот: увлечение девушками резко снижает успеваемость студентов.

Существует множество приемов проведения исследований с участием одного ис­пытуемого. Примером развития плана АВ является «план альтернативных воздей­ствий». Воздействия А и В рандомизированно распределяются во времени, напри­мер по дням недели, если речь идет о разных способах избавления от курения. Затем определяются все моменты, когда было воздействие А; строится кривая, соединяю­щая соответствующие последовательные точки. Выделяются все моменты времени, когда было «альтернативное» воздействие В, и в порядке следования во времени также соединяются; строится вторая кривая. Затем сравниваются обе кривые и вы­является, какое воздействие более эффективно. Эффективность определяется по величине роста или падения кривой (рис. 5.12).

Синонимами термина «план альтернативных воздействий» являются: «план срав­нения серий», «план синхронизированных воздействий», «план множественных рас­писаний» и т.д.

Другой вариант — реверсивный план. Он применяется для исследования двух альтернативных форм поведения. Первоначально регистрируется базовый уровень проявления обеих форм поведения. Первое поведение может актуализироваться с помощью специфического воздействия, а второе, несовместимое с ним, провоциру­ется одновременно другим типом воздействия. Эффект двух воздействий оценива­ется. Через определенное время сочетание воздействий реверсируется так, что пер­вая форма поведения получает воздействие, которое инициировало вторую форму поведения, а вторая — воздействие, релевантное первой форме поведения. Такой план используется, например, при исследовании поведения маленьких детей (рис.5.13).

В психологии обучения применяют метод смены критериев, или «план возраста­ния критериев». Суть его состоит в том, что регистрируется изменение поведения испытуемого в ответ на прирост (фазы) воздействия. Увеличение регистрируемого параметра поведения фиксируется, и следующее воздействие осуществляется лишь после выхода испытуемого на заданный уровень критерия. После стабилизации уровня исполнения испытуемому предъявляют следующую градацию воздействия. Кривая успешного эксперимента (подтверждающего гипотезу) напоминает сбитую каблуками лестницу, где начало ступени совпадает с началом уровня воздействия, а конец ее — с выходом испытуемого на очередной критерий.

Способом, позволяющим нивелировать «эффект последовательности», является инверсия последовательности воздействий — план А—В—В—А. Эффекты последо­вательности связаны с влиянием предшествующего воздействия на последующее (иное название — эффекты порядка, или эффекты переноса). Перенос может быть положительным или отрицательным, симметричным или асимметричным. Последо­вательность А—В—В—А называется позиционно уравненной схемой. Как отмечает Готтсданкер, воздействие переменных А и В обусловлено эффектами раннего или позднего переноса. Воздействие А связано с поздним переносом, а В — с ранним. Кроме того, если присутствует кумулятивный эффект, то два идущих подряд воз­действия В могут влиять на субъекта как единое суммарное воздействие. Экспери­мент может быть удачным лишь в том случае, если эти эффекты незначительны. Рассмотренные выше варианты планов с регулярным чередованием или со случай­ными последовательностями чаще всего очень длинны, поэтому их трудно реали­зовать.

Если подвести краткий итог, можно сказать, что схемы предъявления воздей­ствия применяются в зависимости от возможностей, которые есть у эксперимен­татора.

Случайная последовательность воздействий получается путем рандомизации за­даний. Ее применяют в экспериментах, требующих большого числа проб. Случай­ное чередование воздействий гарантирует от проявления эффектов последователь­ности.

При малом числе проб рекомендуется схема регулярного чередования типа А— В—А—В. Следует обратить внимание на периодичность фоновых воздействий, ко­торые могут совпадать с действием независимой переменной. Например, если да­вать один тест на интеллект утром, а второй — всегда вечером, то под влиянием утомления эффективность выполнения второго теста будет понижаться.

Позиционно уравненная последовательность может быть пригодна лишь тогда, когда число воздействий (заданий) мало и влияние раннего и позднего переноса не­существенно.

Но ни одна из схем не исключает проявления дифференцированного асиммет­ричного переноса, когда влияние предшествующего воздействия А на эффект от воз­действия В больше, чем влияние предшествующего воздействия В на эффект от воз­действия А (или же наоборот).

Разнообразные варианты планов для одного испытуемого обобщили Д. Барлоу и М. Херсен в монографии «Экспериментальные планы для единичных случаев» (Single case experimental designs, 1984)(табл. 5.13).

Таблица 5.13

Основные артефакты в исследовании на одном испытуемом практически не­устранимы. Трудно представить, как можно устранить эффекты, связанные с нео­братимостью событий. Если эффекты порядка или взаимодействия переменных в какой-то мере поддаются контролю, то уже упомянутый эффект асимметричности (дифференцированного переноса) неустраним.

Не меньше проблем возникает и при установлении изначального уровня интен­сивности регистрируемого поведения (уровня зависимой переменной). Исходный уровень агрессивности, который мы зарегистрировали у ребенка в лабораторном эк­сперименте, может быть нетипичным для него, поскольку вызван недавними пред­шествующими событиями, например ссорой в семье, подавлением его активности сверстниками или воспитателями в детском саду.

Главная же проблема — возможности переноса результатов исследования одно­го испытуемого на каждого из представителей популяции. Речь идет об учете значи­мых для исследования индивидуальных различий. Теоретически возможен следую­щий ход: представление индивидуальных данных в «безразмерном» виде; при этом индивидуальные значения параметра нормируются на величину, равную разбросу значений в популяции.

Рассмотрим пример. В начале 1960-х гг. в лаборатории Б. Н. Теплова возникла проблема: почему все графики, описывающие изменения времени реакции в зависи­мости от интенсивности раздражителя, у испытуемых различны В. Д. Небылицын [Небылицын В. Д., 1966] предложил предъявлять испытуемым сигнал, который из­меняется не в единицах физической интенсивности, а в единицах предварительно измеренного индивидуального абсолютного порога («один порог», «два порога» и т.д.). Результаты эксперимента блестяще подтвердили гипотезу Небылицына: кривые зависимости времени реакции от уровня воздействия, измеренного в едини­цах индивидуального абсолютного порога, оказались идентичными у всех испы­туемых.

Аналогичная схема применяется и при интерпретации данных. В Институте пси­хологии РАН А. В. Дрынков проводил исследования процесса формирования про­стых искусственных понятий. Кривые научения показывали зависимость успешнос­ти от времени. Они оказались различными у всех испытуемых: описывались степен­ными функциями. Дрынков предположил, что нормировка индивидуальных показателей на величину начального уровня обученности (по оси Y) и на индивиду­альное время достижения критерия (по оси X) позволяет получить функциональ­ную зависимость успешности от времени, одинаковую для всех испытуемых. Это подтвердилось: показатели изменения индивидуальных результатов испытуемых, представленные в «безразмерном» виде, подчинялись степенному квадратному за­кону.










Последнее изменение этой страницы: 2018-04-12; просмотров: 519.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...