Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Опыт 1. Реакции межмолекулярного окисления-восстановления




В опыте исследуются окислительные свойства перманганата калия в зависимости от реакции среды.

А) среда кислая

KMnO4 + Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + H2O + K2SO4.

В пробирку налить 2-3 мл 2 н. раствора Н2SO4 (среда) и 2 мл 1 н. раствора Na2SO3. Затем в пробирку непосредственно из склянки добавить раствор КМnO4. Отметить, как изменится окраска КМnO4.

Б) среда щелочная

KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O.

В пробирку налить 2 мл 0,5 н. раствораКМnO4 и 2 мл концентрированного раствора КОН или NaOH, затем добавить 3-4 мл 1 н. раствора Na2SO3. Отметить, как изменится окраска КМnO4.

В) Среда нейтральная

KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH.

В пробирку налить 2-3 мл 0,5 н. КМnO4 и добавить столько же 1 н. раствора Na2SO3. Наблюдать выпадение осадка MnO2.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие реакции называются окислительно-восстанови­тель­ными? Какой процесс называется окислением, какой восстановлением? Что такое окислитель и восстановитель?

2. Что называется степенью окисления?

3. Каким образом определяют степени окисления элемента в соединении и в составе иона?


4. Укажите, как изменяются окислительно-вос­становительные свойства элементов в пределах группы Периодической таблицы при движении сверху вниз или снизу вверх, и объясните это изменение.

5. Укажите, как изменяются окислительно-вос­становительные свойства элементов в пределах периодов Периодической таблицы при движении справа налево или слева направо, и объясните это изменение.

6. В каких группах Периодической системы элементов расположены элементы с ярко выраженными восстановительными и ярко выраженными окислительными свойствами?

7. Расположите элементы в порядке возрастания окислительной способности следующие элементы: Cl, Bi, Fr, Se, F, Br.

8. Какие из следующих молекул и ионов могут быть а) только окислителем; б) только восстановителем; в) проявлять свойства как окислителя, так и восстановителя (в сложных ионах кислотных остатков рас­сматривать не кислород, а атом элемента, образующего кислоту):
  Ni, SO32–, N2, Sn2+, NO2, F2, Cu+, Cr3+, Cl2, Cl, Fe, Fe+2, Sn, Sn+2.
Объяснить, как это связано со степенью окисления элемента.

9. Типы окислительно-восстановительных реакций: межмолекулярные, диспропорцирования, внутримолекулярного окисления-восстановления; написать примеры по двум последним типам.

10. Уметь найти окислитель и восстановитель и расставить коэффициенты в уравнении для окислительно-восстановительной реакции, пользуясь методом электронного баланса.


ЛАБОРАТОРНАЯ РАБОТА
«ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ»

Цель работы: составление и исследование работы гальванических элементов

 






ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Электрохимический ряд напряжений

Преобразование химической энергии в электрическую осуществляется в устройствах, называемых химическими источниками тока или гальваническими элементами.

Химический характер какого-либо металла в значительной степени обусловлен тем, насколько легко его атомы способны переходить в состояние положительных ионов.

Металлы, которые проявляют легкую способность окисляться, называют активными(Na, Al, Fe). Металлы, которые окисляются с большим трудом, называются малоактивными (Cu, Ag, Au). Если расположить металлы по уменьшению их способности к окислению (т.е. уменьшению тенденции их нейтральных атомов переходить в положительные ионы — катионы), то получится электрохимический ряд напряжений.

 

←Тенденция перехода в состояние катионов←

Li K Ba Ca Na Mg Al Mn Cr Zn Fe Cd Co Ni Sn Pb H Cu Ag Pt Au

 

Каждый металл вытесняет из раствора солей все другие металлы, стоящие правее его в электрохимическом ряду напряжений.

Пример. Кусочек цинка помещен в раствор сульфата меди. Написать окислительно-восстановительные процессы, протекающие в системе.

Решение. Активный металл — цинк переходит в раствор в виде ионов Zn2+, а малоактивный металл — медь, который в исходном растворе находится в форме ионов Cu2+, осаждается в свободном виде:

Zn + CuSO4 → ZnSO4 + Cu,

Zn0 + Cu2+ → Zn2+ + Cu0.

Протекает окислительно-восстановительная реакция, в которой цинк окисляется:

Zn0 – 2ē → Zn2+,

а катионы меди восстанавливаются:

Cu2+ + 2ē → Cu0.

Подобные реакции всегда протекают, если более активный металл погружают в раствор соли менее активного металла, т.е. если более активный металл находится в форме простого вещества, а менее активный — в форме катионов. При этом первый металл окисляется, а второй восстанавливается.

Обобщая, сделаем вывод: атом металла будет восстановителем по отношению к катиону другого металла, который находится правее его в ряду напряжений; катион металла будет окислителем по отношению к атому другого металла, который находится левее его в ряду напряжений.

Подобные правила относятся и к водороду, так как и он, подобно металлам, может существовать в виде катионов H+. Все металлы, которые в электрохимическом ряду напряжений стоят левее водорода, вытесняют водород из разбавленных кислот, а находящиеся справа от водорода действуют на катионы водорода как восстановители.

Стандартные электродные потенциалы

Мерой склонности веществ к окислению и восстановлению служит стандартный электродный потенциал. Так как нет методов измерения абсолютных величин, то измеряют относительные электродные потенциалы, пользуясь так называемыми электродами сравнения. Основным электродом сравнения является водородный. Условно потенциал водородного электрода принимают за ноль и называют стандартным.

Стандартный потенциал металла E0 — это разность потенциалов между металлом, погруженным в раствор своей соли, содержащий один моль иона этого металла в литре, и стандартным водородным электродом.

Стандартные потенциалы E0 распространенных металлов Men+/Me0 приведены в справочниках, они всегда относятся к определенному электродному процессу, т.е. определенному заряду и составу катиона металла в растворе. Последовательность расположения металлов по возрастанию стандартного потенциала  E0  (от меньших отрицательных к бо́льшим положительным значениям) как раз и отвечает электрохимическому ряду напряжений. Такая

 

2 Таблица

Стандартные потенциалы металлических электродов при 25 °C

Элемент Электродный процесс Е0, В
Li Li+ + ē → Li0 –3,04
K K+ + ē → K0 –2,92
Ba Ba2+ + 2ē → Ba0 –2,90
Ca Ca2+ + 2ē → Ca0 –2,87
Na Na+ + ē → Na0 –2,71
Mg Mg2+ + 2ē → Mg0 –2,36
Al Al3+ + 3ē → Al0 –1,66
Mn Mn2+ + 2ē → Mn0 –1,18
Zn Zn2+ + 2ē → Zn0 –0,76
Cr Cr3+ + 3ē → Cr0 –0,74
Fe Fe2+ + 2ē → Fe0 –0,44
Cd Cd2+ + 2ē → Cd0 –0,40
Co Co2+ + 2ē → Co0 –0,28
Ni Ni2+ + 2ē → Ni0 –0,25
Sn Sn2+ + 2ē→ Sn0 –0,14
Pb Pb2+ + 2ē → Pb0 –0,13
H 2H+ + 2ē → H2 0,00
Cu Cu2+ + 2ē → Cu0 +0,34
Hg Hg22+ + 2ē → 2Hg0 +0,79
Ag Ag+ + ē → Ag0 +0,80
Pt Pt2+ + 2ē → Pt0 +1,19
Au Au3+ + 3ē → Au0 +1,50

 

последовательность называется рядом стандартных электродных потенциалов металлов (табл. 3) и является фрагментом ряда стандартных электродных потенциалов (см. табл. 2). Чем отрицательнее потенциал электрода, тем сильнее восстановительные свойства и больше активность металла.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 425.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...