Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Плазмогены митохондрий и хлоропластов, плазмиды, эписомы и их роль в цитоплазматической наследственности.




Плазмиды – широко распространенные в клетке внехромосомные генетические элементы, которые могут самостоятельно существовать и размножаться автономно от хромосомной ДНК.

Эписомы – это плазмиды, которые реплицируются не автономно, а в составе хромосомной ДНК, в которую они включаются в определенные моменты. В прокариотической клетке имеются плазмиды, которые отвечают за способность бактерий к коньюгации и за устойчивость к некоторым лекарственным средствам. В эукариотической клетке плазмиды представлены митохондриями, пластидами и нуклеотидными последовательностями.

Генетический материал плазмид содержится в матриксе и их ДНК не связана с гистоновыми белками.

Плазмон – это совокупность генов, расположенных в цитоплазматической молекуле ДНК . Наследственность цитоплазматическая (внеядерная, нехромосомная, плазматическая), преемственность материальных структур и функциональных свойств организма, которые определяются и передаются факторами, расположенными в цитоплазме. Совокупность этих факторов - плазмагенов, или внеядерных генов, составляет плазмон (подобно тому, как совокупность хромосомных генов - геном). Плазмагены находятся в самовоспроизводящихся органеллах клетки - митохондриях и пластидах (в том числе хлоропластах и др.). Указанием на существование цитоплазматической наследственности служат, прежде всего, наблюдаемые при скрещиваниях отклонения от расщеплений признаков, ожидаемых на основе законов Менделя. Цитоплазматические элементы, несущие плазмагены, расщепляются по дочерним клеткам беспорядочно, а не закономерно, как гены, локализованные в хромосомах. Плазмагены передаются главным образом через женскую половую клетку (яйцеклетку), так как мужская половая клетка (спермий) почти не содержит цитоплазмы (что, однако, не исключает передачи плазмагенов через мужские гаметы). Поэтому изучение цитоплазматической наследственности ведётся с использованием специальных схем скрещивания, при которых данный организм (или группа) используется и как материнская, и как отцовская форма (реципрокное скрещивание).

 

Генная инженерия и ее значение для природы и общества.

Генная инженерия (генетическая инженерия) – совокупность методов и технологий, в том числе технологий получения рекомбинантных рибонуклеиновых и дезоксирибонуклеиновых кислот, по выделению генов из организма, осуществлению манипуляций с генами и введению их в другие организмы. Генная инженерия – составная часть современной биотехнологии, теоретической основой ее является молекулярная биология, генетика. Суть новой технологии заключается о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма (in vitro) с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных (генетически модифицированных, трансгенных) организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим. С точки зрения методологии генная инженерия сочетает в себе фундаментальные принципы (генетика, клеточная теория, молекулярная биология, системная биология), достижения самых современных постгеномных наук: геномики, метаболомики, протеомики с реальными достижениями в прикладных направлениях: биомедицина, агробиотехнология, биоэнергетика, биофармакология, биоиндустрия и т.д. Генная инженерия относится (наряду с биотехнологией, генетикой, молекулярной биологией, и рядом других наук о жизни) к сфере естественных наук.

 

2.3. Тема: "Генотип"

Аллельные и неаллельные гены (опредедения).

 Аллельные гены – гены, расположенные в одинаковых участках гомологичных хромосом и контролирующие развитие вариаций одного признака.

Неаллельные гены – это гены, расположенные в разных участках хромосом и контролирующие развитие разных признаков или вариаций одного признака.

 

 2. Понятие о действии генов.

Ген – это участок молекулы ДНК (или РНК), кодирующий последовательность аминокислот в полипептидной цепи или последовательность нуклеотидов в молекулах транспортной РНК (т-РНК) и рибосомной РНК (р-РНК).

 Характеристики действия генов:

1) Ген дискретен - то есть имеет начало и конец

2) Ген специфичен – каждый ген отвечает за синтез строго определенного вещества

3) Ген действует градуально

4) Плейотропное действие – 1 ген действует на изменение или проявление нескольких признаков (1910 Плате) фенилкетонурия, синдром Марфана

5) Полимерное действие – для экспрессивности признака нужно несколько генов (1908 Нильсон-Эле)

 6) Гены взаимодействуют между собой через белковые продукты, детерминированные ими

7) На проявление генов оказывают влияние факторы среды

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 766.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...