Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Яркостная и цветовая информация




Как уже отмечалось, излучаемый источником цвет, как правило, представляет со-

бой смесь световых волн различной длины (рис. 6.5). Единственным исключением являются так называемые монохроматические источники света, примерами которых могут служить различные типы лазеров и широко распространенные натриевые лампы. Последние излучают свет только одной длины волны в оранжевой области спектра.

Рис. 6.5. Источники света: 1 - в виде смеси длин волн, воспринимаемой как голубой цвет в соответствии с цветом доминирующей длины волны; 2 - монохроматический красный цвет


Длина световых волн выражается в нанометрах (нм), представляющих собой мил- лиардные доли метра (10-9). Наш глаз может воспринимать электромагнитные волны с длинами в диапазоне от 400 до 700 нм, что составляет ничтожно малую часть всего спектра электромагнитных волн (от 104 до 10-14 м).

В действительности человеческий глаз может воспринимать цвет в более широком диапазоне длин волн — от 380 до 780 нм. Однако воздействие, оказываемое светом за пределами диапазона 400-700 нм, пренебрежимо мало.

Как уже отмечалось, энергия, переносимая электромагнитной волной, связана с

длиной волны обратно пропорциональной зависимостью. Поэтому фиолетовая область видимого спектра, являясь коротковолновой, обладает более высокой энергией по сравнению с красной областью спектра.

С  физической  точки  зрения  свет  можно  охарактеризовать  двумя  параметрами:

энергией (интенсивностью) и длиной волны. Однако в теории цвета, живописи, телевидении и компьютерной графике наибольшее распространение получили два производных от них параметра: яркость и цветность.

Яркость (или интенсивность) пропорциональна сумме энергий всех составляющих

цветового спектра света.

Цветность, наоборот, связана с доминирующими длинами волн в этом спектре,

Ахроматические цвета, то есть белые, серые и черные, характеризуются только яркостью. Это проявляется в том, что одни цвета темнее, а другие светлее. В отличие от них хроматические цвета для своего описания требуют задания и яркости, и цветности.

Распространенность указанных параметров обусловлена физиологическими

особенностями нашего зрения, связанными с наличием в сетчатке глаза уже упоми- навшихся ранее двух типов нервных клеток: палочек, реагирующих на яркостную составляющую света, и колбочек, воспринимающих цветовую информацию.

Яркость является количественной характеристикой цвета. С ее помощью мы можем

сравнивать интенсивность излучения различных источников между собой. В отличие от нее цветность имеет качественный характер. Поэтому для того, чтобы сравнить два цвета по цветности, желательно было бы отделить их от яркости. Практически это невозможно, но теоретически вполне доступно с помощью имеющейся всех графических пакетах цветовой модели Lab. Присутствующие в ней абстрактные цветовые компоненты (собственно цветности) а и b обладают нулевой яркостью, а канал L содержит только яркостную информацию.

 


Цвет и окраска

Для правильной интерпретации восприятия цвета необходимо различать понятия цвета и окраски предмета.

Окраска — это способность предмета отражать излучение в том или ином диа- пазоне длин волн.

Цвет является более широким понятием, включающим окраску и условия осве- щения.

Чтобы представить имеющееся между ними различие, вспомните, как, например, выглядит снег при различных условиях освещения (зимний, мартовский или в сумерках)

или сравните его изображения на картинах Пластова, Грабаря и Кустодиева. Несмотря на то что чистый снег всегда имеет белую окраску, его цвет в зависимости от освещения

может не только быть белым, но иметь голубой, розовый и даже желтый оттенки. Эту разницу очень важно понимать при использовании цвета в прикладных целях, поскольку

различия в освещении при настройке цветопередачи изображения разработчиком и последующем  просмотре  изображения  потребителем  дадут  совершенно  разные

результаты.

Цвет - это один из факторов нашего восприятия светового излучения. Светом и

цветом исследователи интересовались давно. Одним из первых выдающихся достижений


в этой области являются опыты Исаака Ньютона в 1666 г. по разложению белого света на составляющие. Ранее считалось, что белый цвет — простейшей. Ньютон опроверг это. Суть опытов Ньютона такова. Белый луч света (использовался солнечный свет) направлялся на стеклянную треугольную призму. Пройдя сквозь призму, луч преломлялся и, будучи направленный на экран, давал в результате цветную полосу — спектр. В спектре присутствовали цвета радуги, которые плавно переходили друг в друга. Эти цвета уже не раскладывались на составляющие. Ньютон разбил весь спектр на семь участков, соответствующих ярко выраженным различным цветам. Он считал эти семь цветов основными — красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Почему именно семь? Некоторые объясняют это убежденностью Ньютона в мистических свойствах семерки.

Вторая часть опытов Ньютона такова. Лучи, прошедшие сквозь призму, направлялись на вторую призму, с помощью которой удалось снова получить белый свет. Таким образом, было доказано, что белый цвет — это смесь множества разных цветов. Семь основных цветов Ньютон расположил по кругу (рис. 6.6).

Рис. 6.6. Цветовой круг Ньютона

Ньютон предположил, что определенный цвет получается путем смешивания основных цветов, взятых в определенной пропорции. Если в точках на границе цветового круга, которые соответствуют основным цветам, расположить грузы, пропорциональное количеству каждого цвета в смеси, то суммарный цвет будет соответствовать точке центра тяжести, Белый цвет соответствует центру цветового круга.

Последующие исследования цвета выполняли Томас Юнг, Джемс Максвелл и другие ученые. Исследования человеческого цветовосприятия являлись довольно важной задачей, но основные усилия были направлены на изучение объективных свойств света. В настоящее время физики полагают, что свет имеет двойственный характер. С одной стороны, свет представляется в виде потока частиц (еще Ньютон выдвинул так называемую корпускулярну теорию). С другой стороны, свету присущи волновые свойства. С помощью волновой теории, выдвинутой Христианом Гюйгенсом в 1678 году, были объяснены многие свойства света, в частности, законы отражения и преломления.

Рис. 6.7. Зависимость чувчтвительности человеческого зрения от длины волны светового излучения С  позиций  волновых  свойств  цвет  описывается  следующим  образом.  Одна  из волновых характеристик света - длина волны - расстояние, которое проходит волна в течение одного периода колебания. Монохромотическим называется излучение, спектр которого состоит из единственной линии, соответствующей единственной длине волны. Радуга, полученная Ньютоном, состоит из бесчисленного множества монохроматических излучений (равно как и радуга, наблюдаемая нами после дождя). Довольно качественным источником  монохроматического  излучения  является  лазер  -  именно  поэтому его  луч легко сфокусировать.  Цвет монохроматического излучения определяется длиной волны.


Диапазон дайн волн для видимого света простирается от 380-400 нм (фиолетовый) до 700- 780 нм (красный). В указанном диапазоне чувствительность человеческого зрения непостоянная. Наибольшая чувствительность наблюдается для длин волн, соответствующих зеленому цвету.

Как показал Ньютон, белый цвет можно представить смесью всех цветов радуги.

Другими словами, спектр белого является бесконечным, сплошным - в нем присутствуют излучения всех длин волн видимого диапазона.

 










Последнее изменение этой страницы: 2018-04-11; просмотров: 541.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...