Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ПРОЦЕДУРНАЯ И ДЕКЛАРАТИВНАЯ ПАМЯТЬ




 

В последнее время стало приобретать всё большее значение представление о множественности систем памяти. Это представление сформировалось на основе данных, полученных при исследовании больных с различными поражениями мозга, а также в опытах на здоровых испытуемых, выполненных с использованием регистрации вызванных потенциалов, и в опытах на животных с различными повреждениями мозговых структур.

Эти системы памяти имеют разные оперативные характеристики, участвуют в приобретении знаний разного рода и осуществляются разными мозговыми структурами. Исследователи предположили, что переработка по крайней мере двух видов информации ведётся в мозгу раздельно и каждый из этих видов хранится также отдельно [Squire, 1994]. Упомянутые ранее данные, полученные как на амнезированных пациентах, так и на людях с обычной памятью и на животных, позволили разделить системы памяти на две большие группы; процедурную и декларативную память.

Процедурная память – это знание того, как нужно действовать. Процедурная память, вероятно, развивается в ходе эволюции раньше, чем декларативная. Привыкание и классическое обусловливание – это примеры приобретения процедурной памяти. Процедурная память основана на биохимических и биофизических изменениях, происходящих только в тех нервных сетях, которые непосредственно участвуют в усвоенных действиях.

Декларативная память обеспечивает ясный и доступный отчёт о прошлом индивидуальном опыте. В отличие от имплицитной процедурной памяти, она является эксплицитной, сознательной. Память на события и факты включает запоминание слов, лиц и т.д. Содержание декларативной памяти может быть декларировано. Она зависит от интеграции в мозговых структурах и связей с медиальной височной корой и диэнцефалоном, повреждение которых становится причиной её нарушения. Организация декларативной памяти требует переработки информации в височных долях мозга и таламусе. Структурой, важной для декларативной памяти, является гиппокамп (включая собственно гиппокамп и зубчатую извилину, субикулярный комплекс и энторинальную кору) вместе с парагиппокампальной корой. Внутри диэнцефалона важные для декларативной памяти структуры и связи включают медиодорзальные ядра таламуса, передние ядра, маммилоталамический тракт и внутреннюю медуллярную пластинку.

В то время как декларативная память относится к биологически значимым категориям памяти, зависящим от специфических мозговых систем, недекларативная память охватывает несколько видов памяти и зависит от множества структур мозга.

 

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ПАМЯТИ

 

В нейронауках исследование механизмов научения и памяти ведётся преимущественно в контексте пластичности (см. гл. 15). Именно поэтому многие исследования имели своей целью идентификацию пластических изменений активности и морфологии мозга во время обучения и запоминания. Так как пластичность стала доступной для исследований на клеточном и молекулярном уровнях, в настоящее время идентифицировано множество механизмов нейронной пластичности, которые, как предполагается, вносят свой вклад в разные формы обучения.

Обычно в качестве основного изменения при формировании памяти рассматривают модификацию синаптических связей. Эта идея была разработана до теории клеточных ансамблей Д.О. Хеббом [Hebb, 1949]. Интересы современных исследователей направлены не только на синапсы, но и на внутриклеточные процессы. Эксперименты, в которых изучаются механизмы долговременной пластичности, показывают, что по нейрофизиологическим показателям «старые» и «новые» следы памяти неразличимы, а качественно электрическая активность нейронов одинакова. Выдвигается предположение, согласно которому в основе длительно сохраняющихся следов памяти лежат долговременные изменения хемореактивных свойств мембраны нейронов. Это предположение поддерживается результатами экспериментов, в которых осуществляется прямой контроль за состоянием хемочувствительной мембраны на разных этапах её формирования и последующего сохранения во времени [Schwartz et al., 1971; Соколов, Тёр-Маргарян, 1984]. Полученные факты позволяют рассматривать длительно сохраняющиеся изменения хемочувствительных мембран нейронов в качестве одного из реальных механизмов, лежащих в основе сохранения энграмм.

По этой причине в современных исследованиях одно из наиболее разрабатываемых направлений – это изучение структуры и функции синаптических мембран и их роли в передаче, фиксировании и хранении информации. Мембрана может рассматриваться как двойной посредник в передаче информации: состояние мембраны определяет чувствительность к стимулу, а перестройка мембраны после получения сигнала определяет силу, специфичность и адекватность ответа. Исключительная роль мембран в передаче и хранении информации связана с кооперативными структурными переходами в них. Эти переходы могут индуцироваться изменениями в липидах и белках [Бурлакова, 1990]. Не только кратковременная, но и долговременная память связана с изменением структуры липидного бислоя синаптических мембран. И кратковременная, и долговременная память зависят от перехода липидов в одно и то же новое жидкокристаллическое состояние (Крепс, Ашмарин, 1982).

Современный уровень понимания природы синаптической пластичности и эндонейрональных процессов позволяет успешно изучать целенаправленное воздействие на метаболические процессы нервных клеток, обеспечивающие привыкание, ассоциативное обучение, долговременную потенциацию, длительно сохраняющееся изменение синаптической эффективности и другие разнообразные формы пластичности нервных клеток [Салганик и др., 1981; Lynch, Baudry, 1984; Bliss et al., 1986]. Наиболее интересные результаты получают в опытах по изучению пластичности и её изменений под влиянием высокоспециализированных веществ при регистрации электрической активности нейронов [Костюк и др., 1984; Цитоловский, 1986; Belardetti et al., 1986]. Идентификация тонких внутриклеточных биохимических механизмов научения позволила понять особую роль ионов кальция. По предположению кальций осуществляет взаимосвязь между метаболизмом нейрона и его мембраной, являясь метаболически зависимым компонентом клеточной проводимости; он принимает непосредственное участие в формировании пластических реакций нейронов.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 415.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...