Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Использование ГИС в землеустройстве




Геоинформационные (географические) системы определяются как информационные системы, обеспечивающие сбор, хранение, обработку, отображение и распространение данных, а также получение на их основе новой информации и знаний о пространственно-координированных явлениях. Необходимо подчеркнуть их способность хранить и обрабатывать пространственные данные.

В мире сертифицировано огромное количество ГИС для ведения ЕГРН, которые имеют различные расширенные функции и приложения.

Основное назначение ГИС в землеустройстве - это создание цифровых карт и планов местности, являющихся плановой основой современного землеустройства. Создаваемые в ГИС цифровые карты и планы обладают рядом преимуществ перед картами и планами, созданными традиционными методами:

- автоматизацией получения географической информации (положение на местности, метрические характеристики и др.) о пространственных объектах, возможность её экспорта в другие программы для последующего анализа;

- точность географической информации полученной на цифровой карте соответствует точности исходного материала вне зависимости от квалификации, опыта и аккуратности проектировщика, погрешностей средств измерения (планиметров, линеек, транспортиров),  деформации бумаги;

-  возможностью быстрой корректировки и обновления содержимого;

-  занимают мало места, возможно распространение через Internet;

- возможностью пространственного анализа в ГИС (например, определить кратчайший путь между объектами);

- наглядностью (с помощью стандартного монитора можно детально рассмотреть содержимое плана занимающего целую комнату);

- возможностью автоматического создания картограмм (соотносить статистические данные с объектами на плане и передавать их в графическом виде (например, картограмма качества земель);

- возможностью поиска объектов по их местоположению или по записи в базе данных;

- цифровая карта может быть напечатана на бумажном носителе, а вот процесс преобразования содержимого бумажной карты в цифровой вид, требует значительных трудозатрат и последовательного выполнения ряда операций.

Среди наиболее распространенных ГИС: MapInfo, Arc/Info, ArcViewGIS, AutodeskWorld, AutoCADMap, AutoMap, ГеоГраф/ГеоКонструктор, GeoMedia, GeoDraw, MGE (ModularGISEnvironment), WinGIS, Талка, Панорама, Карта 2000, ObjectLand, ArcView, Новая Земля, ROSCAD, Земельный кадастр, БелГИС, ArcCadastre и др.

Процент распространения наиболее используемых ГИС в землеустроительном производстве, представлен на рис. 1.2.

Рис.1.2.  ГИС в землеустроительном производстве

В настоящий момент остро стоит проблема создания и ведения  ЕГРН и других видов кадастров, которые являются основой экономической оценки государственных ресурсов и учёта их использования. Известно, что в выполнении таких работ лучшим средством является применение ГИС - технологий, причём не на одном каком-либо этапе, а на протяжении всей технологической цепочки от сбора первичных материалов и до создания конечной системы.

Главной и основополагающей задачей является получение качественного картографического материала.

На поверхности Земли не может быть территории, которая никому не принадлежит. Использование традиционных технологий (бумажных) не даёт возможности представить в целом покрытие всей территории, поэтому невозможно утверждать, что все земли полностью и всецело учтены.

Традиционно геодезическая съёмка и планы землепользования создавались локально на определённую территорию, например, сельского совета, и никогда ранее не подвергались компьютерной обработке, поэтому при внесении этой информации в ГИС возникают проблемы точности, несоответствия и увязки между территориальными единицами. Очень часто при внесении в ГИС координат поворотных точек внешних границ промеры между ними, записанные в технических отчётах, не совпадают с теми, что вычисляет ГИС, т.е. здесь мы имеем дело с влиянием так называемого «человеческого фактора».

Неточное определение промеров линий влечёт за собой ошибки в вычислении площадей. Даже при правильной и точно проведённой съёмке ошибки возникали в процессе создания графических материалов (нанесение на лавсан). Так как все контура внутри хозяйства взаимосвязаны друг с другом, то неправильное нанесение хотя бы одной линии влечёт за собой искажения смежных областей карты. При создании цифровой карты по таким материалам возникают большие искажения со сдвигами порядка 10-20 м относительно истинного расположения контуров на местности.

Учитывая, в большинстве случаев, плохое качество самих материалов, при переводе имеющихся картографических материалов в цифровой вид ошибка в плане составляет до 30 м, происходит сдвиг контуров и их вращение на произвольный угол. Почвенные карты, которые есть сегодня, имеют качество и точность ещё хуже. Поэтому использовать имеющиеся картографические землеустроительные материалы можно с большой натяжкой и только в виде землеустроительных схем. Для получения реальной картины приходится делать практически полную геодезическую съёмку, что занимает много времени и средств.

Во многих случаях отсутствуют пункты государственной геодезической сети, что приводит к необходимости создания собственной опорной съёмочной сети, и не локально на одну административную единицу, а на довольно большую территорию, что экономически более выгодно с применением ГИС-технологий, в том числе GPS систем.

Для получения наилучших результатов желательно использовать GPS в сочетании с электронными тахеометрами и портативными компьютерами.

Данные, полученные в результате съёмки, геодезист имеет возможность обрабатывать непосредственно в поле и устранять возникающие ошибки и невязки, т.е. проводить камеральные работы в тесном контакте с объектом съёмки. Этот способ наиболее экономически оправдан, особенно при проведении широкомасштабной съёмки и на большом удалении от офиса. Также важно, что полученные данные можно экспортировать непосредственно в систему обработки, оперативно использовать для построения и корректировки цифровой модели местности, и если это необходимо, цифровой модели рельефа.

На практике, учитывая организационные и материальные проблемы, все вышеуказанные аспекты не всегда удаётся воплотить в жизнь.

Геоинформационные системы совсем недавно стали доступными широкому кругу пользователей, но их роль в развитии подходов к построению информационных систем и решении прикладных задач сегодня нельзя недооценивать. Широкое использование ГИС позволяет полностью перейти к безбумажной технологии выполнения полевых работ. В зависимости от конфигурации и программного обеспечения компьютеров ГИС могут использоваться как дополнительный способ при выполнении съёмочных работ, так и служить ядром компьютерной системы сбора и обработки полевой информации. Мировые тенденции таковы, что необходима возможность во времени управлять огромной базой пространственных данных, с чем успешно справляется ГИС.

 

 










Последнее изменение этой страницы: 2018-04-11; просмотров: 207.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...