Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Взаимное расположение прямых на плоскости.




A1/ A2= B1/ B2 =C1/ C2 (две прямые на плоскости либо пересекаются в одной точке либо совпадают либо параллельны)

Условия параллельностисовпадает с условием коллинеарности векторов:A1/A2= B1/B2=C1/C2

Условия перпендикулярностиравносильно условию перпендикулярности их направляющих векторов a1 a2 A1*A2+ B1*B2+ C1*C2

 

 

40. Разъяснить критерии взаимного расположения прямой и плоскости. Дать определение угла между прямой и плоскостью, расстояния от точки до плоскости, записать соответствующие формулы..

Взаимное расположение прямой и плоскости определяется множеством решений линейной системы

Углом между прямой и плоскостьюназывается любой угол между прямой и ее проекцией на эту плоскость. Пусть плоскость задана уравнением , а прямая - .

Пусть плоскость П,задана уравнением Ax+By+Cz+D=0 и дана точка Mo(Xo;Yo; Zo) . Тогда расстояние p от точки Mo до плоскости П определяется по формуле

41. Дать определение числовой последовательности, изложить ее свойства. Перечислить виды последовательностей. и способы задания числовой последовательности.

Числовая последовательность – это числовая функция, заданная на множестве натуральных чисел.

Задать последовательность означает задать правило, по которому каждому номеру из ряда натуральных чисел соответствует одно и только одно действительное число.

Способы задания последовательности:

1) формулой общего члена

2) рекуррентной формулой

3) словесным описанием

4) графически

5) точками на числовой оси

Свойства числовых последовательностей:

1) монотонность

Последовательность называется возрастающей (убывающей), если каждый её член начиная со второго больше (меньше) предыдущего.

2) ограниченность

Последовательность называется ограниченной, если она ограничена и сверху и снизу.

Последовательность {Xn} называется ограниченной сверху (снизу), если существует число M (m) такое, что выполняется неравенство Xn≤М (Xn≥m).

 

42. Дать определение арифметической прогрессия и изложить ее свойства

Арифметическая прогрессия -Это последовательность, всякий член которой, начиная со второго, равен предыдущему, сложенному с постоянным числом. хn+1n+d

Если шаг d > 0, прогрессия является возрастающей; если d < 0, — убывающей.

Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии:
.

Сумма n первых членов арифметической прогрессии может быть выражена формулами

Сумма n последовательных членов арифметической прогрессии начиная с члена k:

Пример суммы арифметической прогрессии является сумма ряда натуральных чисел до n включительно:

 

43..Дать определение геометрической прогрессия и изложить ее свойства.

Геометрическая - это последовательность, всякий член которой, начиная со второго, равен предыдущему, умноженному на постоянное число. хn+1n+q

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

,

Произведение членов геометрической прогрессии начиная с k-ого члена, и заканчивая n-ым членом, можно рассчитать по формуле:

Сумма n первых членов геометрической прогрессии:

, при

, при

Если , то при , и

при .

 

44. Дать понятие предела последовательности. Изложить критерий Коши и Сформулировать теоремы о свойствах предела последовательности.

.Конечное число а называется пределом числовой последовательностиn}, если для любого > 0 (сколь угодно малого) существует число N = N( ) такое, что |хn - а| N.
Обозначение: = а.
Определение 2. Числовая последовательность имеет бесконечный предел, если для любого > 0 (сколь угодно большого) существует число N = N( ) такое, что | хn при всех n > N.

Обозначение: = м

Критерий Коши:

Число а называется пределом числовой последовательности {Xn} при n стремящемся к бесконечности, если для любого сколь угодно малого положительного числа эпсилон найдётся такое натуральное число N, зависящее от эпсилон, что для всех n≥N выполняется неравенство │Xn-а│<E.

Теоремы о пределах последовательностей:

1) Если последовательности {xn} и {yn} сходятся и выполняются равенства  , , то сходятся также их сумма, разность, произведение и частное.

И верны формулы:

 

 

 

Следствие: постоянный множитель можно выносить за знак предела.

2) Если между членами трёх последовательностей {Xn} {Yx} {Zn} выполняется неравентсво Xn≤Zn≤Yn и пределы  существуют и равны между собой, то существует и предел последовательности Zn, который равен их общему пределу.

 

 

45. .Дать понятие бесконечно больших и бесконечно малых последовательностей, изложить их свойства.

. Бесконечно малые и бесконечно большие последовательности:

Последовательность называется бесконечно малой, если её предел равен нулю.

Свойства бесконечно малых последовательностей:

1) сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

2) произведение ограниченной последовательности на бесконечно малую, есть бесконечно малая последовательность.

Следствие: произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

3) для того, чтобы выполнялось равенство  необходимо и достаточно, чтобы последовательность можно было представить в виде суммы постоянной величины и бесконечно малой последовательности.

Последовательность называется бесконечно большой, если для любого числа М>0 найдется такое натуральное число N, что для всех n начиная с этого номера выполняется условие │Xn│>М.

Свойства бесконечно больших последовательностей:

1) Если {αn}бесконечно малая последовательность, то { } бесконечно большая последовательность. Если {αn}бесконечно большая последовательность, то { } бесконечно малая последовательность.

2) Если предел последовательности βn=∞ и все члены этой последовательности, начиная с некоторого номера, положительны, то последовательность стремится к положительной бесконечности. А если члены отрицательны, то последовательность стремится к отрицательной бесконечности.

 

46. Дать понятие предела функции в точке. Изложить критерий Гейне и критерий Коши. Сформулировать теоремы о свойствах пределов функций.

Предел функций в точке:

Предел в точке -числоb назв. пределом функции f в точке x=a, если для любой послед {Xk}, сходящейся к а, соответствующая последовательность значений функции {F(k)} сходится к b.

Критерий Гейне: число А называется пределом функции в точке х0, если для любой последовательности значений аргументов {xn} сходящейся к х0, соответствующая последовательность значений функций сходится к А.

Критерий Коши: число А называется пределом функции при х стремящемся к х0, если для любого эпсилон больше нуля можно указать такое положительное δ(дельта), зависящее от эпсилон, что для любого х удовлетворяющего неравенству 0<│х- х0│<δ выполняется неравенство │f(x)-А│<Е.

Теоремы о пределах:

Если существуют , , то существует также предел их суммы, разности, произведения и частного.

Следствия:

1) постоянный множитель можно выносить за знак предела

2) предел многочлена в точке равен значению многочлена в этой точке.

3) предел дробно-рациональной функции также равен значению функции в этой точке при условии, что точка принадлежит области определения функции.

Если при вычислении предела и числитель и знаменатель имеют предел равный нулю, то нужно разделить их на двучлен х- х0 и вычислить предел, при необходимости повторить.

 

 

47 Дать понятие предела функции на бесконечности и односторонних пределов. Раскрыть суть вычисления пределов как раскрытия неопределенностей. Записать формулы замечательных пределов..

Число В называется пределом функции f(x) если для любого ε > найдеться число М>0 такое что для всех Х >М выполняеться f(x)- b < ε

Односторо́нний преде́л — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны.  Если число А1 (число А2) есть предел функции при х, стремящемся к а так, что х принимает только значения меньшие (большие) а, то А1 2) называется левым (правым) пределом функции в точке а.

 

Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:бесконечность –бесконечность, бесконечно \бесконечность,0 в нулевой степени и тд…

 

Первый замечательный предел:

 

 

Второй замечательный предел:

 

48. Определить понятия бесконечно больших и бесконечно малых функций,  эквивалентности бесконечно малых функций. Записать формулы эквивалентных бесконечно малых функций.

Функция y=f(x) называется бесконечно малой при x→a или при x→∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

Бесконечно большая функция если её придел равен +- бесокнечности.

Пусть α=α(х) и ß=ß(х) есть б.м.ф. при х→хо, т. е.

и

1. Если =А¹ 0 (АєR), то α и ß называются бесконечно малыми одного порядка.

2. Если, =0, то α називатся бесконечно малой более высокого порядка , чем ß.

3. Если =∞, то α называется бесконечно малой более низкого порядка, чем ß.

4. Если не существует, то α и ß называются несравнимыми бесконечно малыми.

 

49. Дать определения непрерывность функции в точке. Изложить свойства функций, непрерывных в точке.

Функция yf(x непрерывна в (.)х=х0 если:

1)она в этой точке определена

2)значения предела данной функции = значению предела даной точке.

Свойства

1)если y=f(x) и  y =q(x) неперывны в (.)х0. То их сумма разность , произведение , частное неперывно в точке х0.

50. Дать определение точки разрыва функции. Сформулировать условие непрерывности функции в точке. Изложить классификацию разрывов функции.

Точка в которой нарушаеться условие непрерывности называеться точкой разрыва.

Функция y=f(x) непрерыввна в х0 тогда и только тогда . если предел слева = пределу справа и = значению функции этой точки f(x0-o)=f(x0+0)=f(xo).

1)Если в точке х=х0 f(x0-o) не =f(x0+0) то х0- предел разрыва 1 рода, при этом одностороние пределы сушь и конечны

2)Ести хоть 1 из одностороних пределов бесконечен или не сушествует то х0 точка разрыва 2 рода

3)Если односториние пределы сушь , конечны и равны между собой но не раны значению функции в точке х0 то х0 точка устранимого разрыва.

51. Дать определение непрерывности функции на отрезке. Сформулировать теоремы о функциях, непрерывных на отрезке.

. Функция f(x) называется непрерывной на отрезке [a, b], если она непрерывна на интервале (a, b), непрерывна справа в точке a и непрерывна слева в точке b.

Теорема 1 (об ограниченности непрерывной функции). Если функция f(x) непрерывна на отрезке [a, b], то она ограничена на этом отрезке, т.е. существует такое число C> 0, что "x О [a, b] выполняется неравенство |f(x)| ≤ C.

Теорема 2 (Вейерштрасс). Если функция f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m, т.е. существуют точки α, β О [a, b] такие, что m = f(α) ≤ f(x) ≤ f(β) = M для всех x О [a, b]

Теорема 3 (о существовании нуля). Если функция f(x) непрерывна на отрезке [a, b] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a, b) найдется по крайней мере одна точка ξ в которой f(ξ) = 0.

Теорема 4 (Больцано–Коши). Если функция f(x) непрерывна на отрезке [a, b], то она принимает на (a,b) все промежуточные значения между f(a) и f(b).

 

52. Дать определение асимптоты графика функции. Назвать их виды, сформулировать условия существования...

Асимптотой называеться кривая к которой приблежаються точки на прямой , по мере удаления аргумента от начала кординат.

Виды: вертекальные горизонтальные наклонные.

1)прямая Х=а называеться вертекальной асимптотой графикаy=f(x) если хоть 1 из указаных значений х=а limf(x) и хстремиться к + или -a.

2)горизонтальная асимптота .y=f(x) при х стремиться к =или- бесконечности имеет горизонтальную асимптоту

Limf(x)=b  при х стремиться к бесконечности или - бесконечности .

3)наклонная y=f(x) имеет наклонную асимптоту тогда и только тогда когда сушшь 2 конечных придела k=lim(f(x)/x) при х стремяшемся к бесконечности … lim (f(x)-kx)=b

53. Дать определение производной функции. Сформулировать и доказать основное свойство производной функции. Сформулировать правила дифференцирования и записать соответствующие формулы.

 

 

54..Раскрыть механический (физический) и геометрический смысл производной. Записать и разъяснить уравнения касательной и нормали к кривой.

Геометрический смысл производной. Если функция имеет конечную производную в точке x0, то в окрестности U(x0) её можно приблизить линейной функцией

Функция fl называется касательной к f в точке x0. Число f'(x0) является угловым коэффициентом или тангенсом угла наклона касательной прямой.

Скорость изменения функции

Пусть s = s(t) — закон прямолинейного движения. Тогда v(t0) = s'(t0) выражает мгновенную скорость движения в момент времени t0. Вторая производная a(t0) = s''(t0) выражает мгновенное ускорение в момент времени t0.

Вообще производная функции y = f(x) в точке x0 выражает скорость изменения функции в точке x0, то есть скорость протекания процесса, описанного зависимостью y = f(x).

уравнение касательной  или  Уравнение нормали

 

55. Сформулировать теоремы о дифференцировании сложной и обратной функций и доказать их.

Теорема 3 (дифференцирование сложной функции).Пусть
функция x =
f(t) дифференцируема в точке t, а функция y = f(x) дифференцируема в соответствующей точке x = f(t). Тогда сложная функция y = f(f(t)) дифференцируема в точке t, причем справедлива формула

(f(f(t)))' = f'(x)f'(t). Доказательство. Зададим x = f(t) отличное от нуля приращение D t. Этому приращению отвечает приращение D x = f (t+D t)-f (t) функции x = f(t). Приращению D x отвечает приращение D y = f(x+ D x)-f(x). Так как функция y = f(x) дифференцируема, то ее приращение D y представимо в виде (1): D y =f'(x)D x +a (D x) D x, где limD x® 0a (D x ) = 0. Поделив данное выражение на D t ¹ 0, будем иметь: D y/D t=f'(x)D x/D t+ a (D x)D x/D t. Из дифференцируемости функции x = f (t) в точке t вытекает, что limD t® 0D x/D t = f'(t). Отметим, что из дифференцируемости функции x = f(t) следует, что D x® 0 при D t® 0. Следовательно, limD t® 0a (D x) =0. Таким образом, получим необходимую формулу

Теорема 4 (производная обратной функции).Пусть функция
y = f(x) возрастает (или убывает) и непрерывна в некоторой окрестности точки x. Пусть, кроме того, эта функция дифференцируема в точке x и f'(x)
¹ 0. Тогда в некоторой окрестности соответствующей точки y = f(x) определена обратная функция x = f-1(y), причем обратная функция дифференцируема в точке x = f-1(y) и для ее производной справедлива формула

(f-1(y))' = 1/f'(x).

 

56. Дать определение функции, заданной параметрическими уравнениями. Сформулировать теорему о дифференцировании функции, заданной параметрически, и доказать ее. Дать определение неявной функции. Сформулировать правило дифференцирования неявной функции.

57. Сформулировать и доказать теоремы Ролля, Лагранжа и Коши и их следствия.

Теорема 1. (Теорема Ролля) Пусть функция f(x)

непрерывна на отрезке [a, b];

дифференцируема в интервале (a, b);

на концах отрезка [a, b] принимает равные значения.

Тогда существует точка c О (a, b) такая, что f'(c) = 0.

Теорема 2. (Теорема Лагранжа) Пусть функция f(x)

непрерывна на отрезке [a, b];

дифференцируема в интервале (a, b).

Тогда существует точка с О (a, b) такая, что

 

  f(b) − f(a) = f '(c) · (b − a) .

Теорема 3. (Теорема Коши) Пусть функции f(x) и g(x)

непрерывны на отрезке [a, b];

дифференцируемы в интервале (a, b);

"x О (a, b) g'(x) ≠ 0 .

Тогда существует точка c О (a, b) такая, что

f(b) − f(a) =
 g(b) − g(a)
f '(c)
g '(c)

 

 

58. Дать понятие о неопределенностях при вычислении пределов и назвать их виды. Сформулировать правило Лопиталя и рассказать об особенностях его применения..

59. Дать определение дифференциала функции и раскрыть его геометрический смысл. Сформулировать свойства дифференциала и записать соответствующие формулы.

Дифиринциал-линейная часть приращения функции

Свойства:1)диффиринциал постоянной =0

2)дифференциал суммы дифференциальных функций равен сумме дифиринциалов слогаемых

3)диф. Произведения 2 диф. Функций равен произведению первой на диф 2 + наоборот

4)диф частного u/v диф функций u=u(x) и v=v(x) определяеться формулой

D(u/v)=vdu-udy/v*v

60. Записать формулы, используемые в приближенных вычислениях с помощью дифференциала и. объяснить их. Привести соответствующие примеры.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 178.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...