Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Химические источники тока. Гальванические элементы. Аккумуляторы.




Хими́ческий исто́чник то́ка (аббр. ХИТ) — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани. Переход химической энергии в электрическую энергию происходит в гальванических элементах

Аккумуляторы – гальванические элементы, которые на основе обратимых электрохимических реакций могут многократно накапливать химическую энергию и отдавать ее для потребления в виде электрической энергии постоянного тока.Аккумуляторы – устройства многоразового действия, сочетающие в себе гальванический элемент и электролизер. Под воздействием внешнего постоянного тока в них аккумулируется (накапливается) химическая энергия, которая затем превращается в электрическую энергию в результате окислительно-восстановительной реакции.Процесс накопления химической энергии называют зарядом аккумулятора, процесс ее превращения в электрическую – разрядом аккумулятора. В первом случае аккумулятор работает как электролизер, во втором – как гальванический элемент.Устройство и принцип действия всех аккумуляторов одинаковы. Основное отличие состоит в материале электродов и типе электролита. На аноде как при разряде, так и при заряде протекает процесс окисления, на катоде – процесс восстановления.

Электролиз, различные случаи электролиза растворов и расплавов.

-Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.

Электролиз является одним из лучших способов золочения или покрытия металла медью, золотом и т.д

-Химические реакции, протекающие при электролизе, осуществляются при помощи энергии электрического тока, подведённого извне. Следовательно, при электролизе происходит преобразование электрической энергии в химическую. Процессы окисления и восстановления в этом случае протекают раздельно, т.е. на различных электродах. Электрод, на котором происходит восстановление, называется катодом, а электрод, на котором происходит окисление, - анодом. Катод подключён к отрицательному полюсу, и поэтому к нему движутся катионы, анод – к положительному полюсу, к нему движутся анионы. Минимальный потенциал (В), при котором процесс электролиза становится возможным, называется потенциалом (напряжением) разложения. Его находят вычитанием электродного потенциала

катиона из соответствующего значения электродного потенциала аниона, единица измерения вольт (В).

Электролиз расплава. Рассмотрим электролиз расплава СuCl2, который диссоциирует на ионы Сu2+ и Cl⁻. При подключении напряжения к электродам через расплав начинает протекать электрический ток. Так, при электролизе расплава хлорида меди (II) электродные процессы могут быть выражены полуреакциями:

на катоде (–): Сu2+ + 2e → Cu0 – катодное восстановление

на аноде (+): 2 Cl – 2e → Cl2 – анодное окисление

Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением

Cu2+ + 2 Cl → Cu + Cl2

Электролиз растворов осложняется участием в электродных процессах ионов Н⁺ и ОН⁻. Кроме того, молекулы воды сами могут подвергаться электродному окислению или восстановлению.

Катодные процессы в водных растворах при электролизе не зависят от материала катода, а только от природы катиона.

Анодные процессы в водных растворах зависят от материала анода и природы аниона. При рассмотрении анодных процессов следует иметь в виду, что материал анода в ходе электролиза может окисляться

Практическое значение процессов электролиза. Закон Фарадея.

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленностиэлектролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов.
Электролиз может осуществляться с растворимыми анодами - процесс электрорафинирования или с нерастворимыми - процесс электроэкстракции.
Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах.

В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

-Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

-Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.



Тема №5 Коррозия металлов и сплавов










Последнее изменение этой страницы: 2018-04-12; просмотров: 622.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...