Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Расчет погрешностей измерений




 Погрешности измерения можно разделить на три класса:

 а) систематические; б) случайные; в) промахи.

К систематическим погрешностям относятся:

- инструментальные погрешности, которые, в свою очередь, складываются из приборной погрешности (класс точности) и погрешности от взаимодействия средства измерения с источником сигнала (зависит от входного сопротивления прибора);

- дополнительные погрешности из-за влияния внешних факторов (температура, магнитное поле и т. п.);

- личные погрешности, вызываемые индивидуальными особенностями наблюдателя;

- погрешности метода измерений.

Например, погрешность от взаимодействия средства измерения с источником сигнала при измерении тока в цепи с сопротивлением  и сопротивлении амперметра  равна:

                                          

Погрешность от взаимодействия средства измерения с источником сигнала при измерении напряжения на участке цепи сопротивлением  и сопротивлении вольтметра  равна:

                                  

Эти формулы применимы и при измерении мощности и энергии электрического тока.

Приборная погрешность зависит от класса точности. Если класс точности прибора выражается через приведенную погрешность , то относительная погрешность показания прибора будет равна для амперметра:

 

                                         

где  - показание амперметра,  - его номинальное значение.

Аналогично и для вольтметра:

                                        

Если класс точности выражается через относительную погрешность , то погрешность показания равна классу точности прибора.

Дополнительные погрешности, так же относящиеся к систематическим инструментальным погрешностям, обусловлены отклонением условий измерений от нормальных.

Так, например, в схемах амперметров с шунтами, так как шунты делают из манганина (сопротивление манганина практически не зависит от температуры), приходится применять схемы температурной компенсации. В простейшем случае последовательно с рамкой включают сопротивление r1 из манганина, рис. 1.

 

                

Рис. 1.

Тогда температурный коэффициент сопротивления цепи рамки уменьшится и температурная погрешность будет  определяться формулой:

                              

где β0 —температурный коэффициент сопротивления цепи рамки;

r0 — сопротивление рамки, пружинок и соединительных проводов;

rш — сопротивление шунта;

r1 — добавочное сопротивление из манганина;

;  - температура во время измерения.

В приборах высокого класса точности применяют последовательно-параллельную схему температурной компенсации.

При отсутствии температурной компенсации:

                                

Температурная погрешность магнитоэлектрических вольтметров определяется формулой:

                                

где  - добавочное сопротивление из манганина.

Из формулы видно, что температурную погрешность вольтметра можно уменьшить, увеличивая добавочное сопротивление из манганина.

Для электромагнитных и электродинамических вольтметров температурная погрешность зависит от температурного коэффициента момента пружин и температурного коэффициента сопротивления катушек и определяется формулой:

                          

где - температурный коэффициент момента пружинок (он отрицателен и составляет 0,2¸0,3% на 10°С).

Второй член этого выражения зависит от предела измерения прибора. Наибольшей погрешностью обладает вольтметр на самом низком пределе измерения, т.к.  в этом случае минимально.

В электродинамических амперметрах с последовательной схемой соединения катушек и в электромагнитных амперметрах температура влияет только на упругие свойства пружин. Поэтому температурная погрешность их не превышает ±0,2% на 10°С и не требует специальных способов компенсации.

На электродинамические и электромагнитные вольтметры существенное влияние оказывает частота. Главной причиной расхождения их показаний на постоянном и переменном токе является наличие индуктивного сопротивления .

Частотная погрешность  при переходе от постоянного тока к переменному рассчитывается как:

 

                  

где r – сопротивление вольтметра на постоянном токе;

rа – активное сопротивление цепи вольтметра на переменном токе.

При частотах до 2000 Гц, на которых работают эти приборы, можно считать отличие  и , обусловленное вихревыми токами, в толще меди обмотки и окружающих металлических частях пренебрежимо малым. Тогда, принимая rа r, получим:

                                                    

                            

или

                                

Отклонение подвижной части выпрямительного прибора пропорционально средневыпрямленному значению протекающего через него тока. Поэтому измерить действующее значение переменного тока можно только в том случае, если известен коэффициент формы кривой переменного тока. Обычно шкалы выпрямительных приборов градуируются в действующих значениях при синусоидальной форме кривой, умножая для этого показания прибора на коэффициент формы =1,11 (так как для синусоиды ).

Если формы кривой отличаются от синусоидальной, в показаниях возникает погрешность, присущая методу измерения:

                                 

Методические погрешности обусловлены несовершенством метода измерения и, в частности, несовершенством схемы измерения. Так при косвенных измерениях сопротивления и мощности, потребляемой нагрузкой, методом амперметра и вольтметра обычно используют две схемы, рис. 2.

 

                                           Рис. 2.

 

Погрешности измерения сопротивления ∆  и самого  по схеме а) равны:

                   

где  и  показания приборов.

Погрешности измерения  по схеме б):

       

Субъективные или личные погрешности у опытных экспериментаторов обычно малы и ими пренебрегают по сравнению с другими составляющими суммарной систематической погрешности. Принято считать, что эта погрешность Δотс,п   (погрешность отсчитывания) не превышает 20% от постоянной прибора, т.е.

                                       

Поскольку погрешность измерениявеличинасуммарная,то припрямыхизмерениях:

а) Для вероятности Р = 1 находят предельные значения погрешности измерения Δп путём арифметического суммирования предельных значений составляющих Δi,п:

Δп = ± .                                                    

Составляющими могут быть:

– основная погрешность Δо,п;

– дополнительные погрешности Δд,п;

– погрешность отсчитывания Δотс,п;     

– погрешность взаимодействия Δвз,п.

При таком способе суммирования получается сильно завышенноее погрешности, ибо маловероятно, чтобы все составляющие оказались на своих пределах и были при этом одного и того же знака (плюс или минус). Зато этот способ даёт полную гарантию.

б) Для вероятности Р < 1 находят граничные значения погрешности измерения Δгр путём статистического суммирования предельных значений составляющих Δi,п:

Δгр = ± К .                                             

              Значение  К  зависит от законов распределения случайных величин Δi и от задаваемого значения вероятности Р. Если законы распределения неизвестны, рекомендуется принять, что для всех составляющих это закон равномерной плотности. При этом из теории вероятностей следует, что значения К при разных значениях Р соответствуют приведённым в таблице:

Р 0,9 0,95 0,99
К 0,95 1,1 1,4

 

Суммарная погрешность при косвенных измеренияхнаходится по аналогичным формулам.

              В этом случае известна функциональная зависимость результата косвенного измерения Y от аргументов Х1; Х2;…Хn:

(Пример: R = здесь Y = R; Х1 = U; X2 = I).

              Требуется найти погрешность ΔY, происходящую от погрешностей ΔХ1; ΔХ2;… ΔХn.

              Пусть: ΔY = Δ; ΔХ1 = Δ1; ΔХ2 = Δ2;… ΔХn = Δn, тогда по формуле полного дифференциала:

    .                  

Предельные значения суммарной абсолютной погрешности:

   Р = 1.                                              

При Р < 1 применяют статистическое суммирование:

  ,                                         

где К зависит от задаваемого значения вероятности Р так же, как при прямых измерениях (см. табл.).

Таким образом, систематические погрешности измерения при тщательной постановке опыта могут быть учтены и даже устранены.

 Случайные погрешности и промахи контролю не поддаются, так как они появляются в результате одновременного действия многих различных причин. Эти погрешности подчиняются законам больших чисел, поэтому здесь возможен только статистический учет, подчиняющийся теории вероятностей.

Случайные погрешности и промахи  обнаруживаются при многократных измерениях заданной величины в одних и тех же условиях.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 282.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...