Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Эффективность использования альтернативных топлив автотранспортом




(в относительных единицах)

Вид топлива Затраты энергии на производство* Стоимость единицы пробега
Бензин из нефти 100 100
Синтетический бензин из угля 160 120
Сжиженный природный газ 125 85
Пропан 105 70-90
Метанол 160 150
Этанол 170 180

 

*В затратах энергии учтена добыча, переработка и транспортировка сырья, а также производство и распределение топлива.

Синтетические спирты

Все большее развитие получает синтез жидкого искусственного топлива, приближающегося по качеству к топливам нефтяного происхождения. Из угля, природного газа, известняка, отходов лесного хозяйства получают метиловый спирт — метанол, а из сахарного тростника, свеклы, зерновых культур вырабатывают этиловый спирт — этанол. Выпуск в нашей стране синтетического спирта метанола достиг в 1998 г. 44 млн т.

Наиболее перспективным сырьем для расширения производства метанола являются природный газ, нефтяные остатки и особенно уголь.

Для производства 1 т синтетического топлива необходимо большое количество угля —от 3 до 6 т, поэтому оно пока еще дороже бензина в 1,5...2 раза.

Метанол и этанол, используемые в качестве топлива для автомобильных двигателей, характеризуются высоким октановым числом, меньшей по сравнению с бензином теплотворной способностью, высокой скрытой теплотой испарения, низкими упругостью паров и температурой кипения. Кроме того, метанол как автомобильное топливо обусловливает рост мощности и КПД двигателя, снижение теплонапряженности деталей цилиндропоршневой группы, закоксовывания и нагарообразования. Также при использовании метанола (при том же уровне концентрации оксида углерода, что и при работе двигателя на бензине) наблюдается уменьшение в 1,5...2 раза содержания оксида азота и в 1,3...1,7 раза — углеводородов в отработавших газах. Однако для повседневного использования метанола в качестве автомобильного топлива необходимы конструктивные изменения топливной аппаратуры двигателя и в какой-то мере самого автомобиля. Поэтому в настоящее время метанол лучше использовать в качестве добавки к бензину. Установлено, что добавка 3...5 % метанола обеспечивает экономию 2,5 % бензина при сохранении мощности двигателя, его динамических и экономических показателей, а также уровня токсичности выхлопных газов. При этом допустимо использовать бензин с несколько меньшим октановым числом или заменять этилированный бензин на неэтилированный.

Применение бензометанольной смеси (с добавкой 15 % метанола и 7 % стабилизатора — изобутилового спирта) позволяет повысить на 6 % динамические качества автомобиля и на 3... 5 % его мощность, одновременно уменьшить выброс оксида азота на 30—35 % и углеводородов на 20 %, а также получить экономию бензина до 14 %.

При использовании бензометанольной смеси М15 устойчивость запуска холодного двигателя обеспечивается при температуре воздуха –26 0С.

Предельно допустимая концентрация паров метанола в воздухе рабочей зоны двигателя значительно выше, чем при использовании таких антидетонаторов, как ТЭС и ТМС, и составляет 5 мг/м3.

В целом, применение метанола как добавки к бензину, улучшающей ряд его эксплуатационных свойств, рассматривается как реальный фактор увеличения ресурсов автомобильного топлива.

Реальное улучшение эксплуатационных свойств дизельного топлива при добавлении спирта сопоставимо с улучшением свойств бензина, т.е. низкая температура самовоспламенения (низкое цетановое число) не исключает использования метанола и этанола в качестве добавки к дизельному топливу (при условии конструктивного изменения двигателя) в количестве, не превышающем 15...20 %.

Метилтретичнобутиловый эфир

В качестве добавки к бензину используют также метилтретичнобутиловый эфир (МТБЭ), получаемый путем синтеза 65 % изобутилена и 35 % метанола в присутствии катализаторов. Добавка МТБЭ к бензину обеспечивает:                         - получение неэтилированных высокооктановых бензинов;

- повышение октанового числа (при добавке 10 % МТБЭ ОЧИ увеличивается на 2,1...5,9 единиц, а при добавке 20 %—на 4,6...12,6 единиц);

- облегчение фракционного состава бензина и снижение температуры перегонки 50 % фракции (но при этом возможно образование паровых пробок);

- некоторое улучшение мощностных и экономических показателей двигателя;

- снижение токсичности отработавших газов примерно на 10 %;

- снижение расхода бензина на 4 %, а также снижение необходимого количества ТЭС почти в два раза.                      

Кроме того, при использовании МТБЭ нет необходимости изменять регулировку топливной аппаратуры, так как МТБЭ отличается высокой теплотворной способностью 37700 кДж/кг.

Использование МТБЭ в настоящее время одно из самых перспективных направлений расширения ресурсов высокооктановых неэтилированных бензинов.

Газовые конденсаты

Высокие темпы добычи природного газа обеспечивают значительный прирост добычи сопутствующего ему продукта — газового конденсата, который на нефтеперерабатывающих заводах совместно с нефтью перерабатывается в моторные топлива. В нашей стране крупнейшие газоконденсатные месторождения (ГКМ) находятся на Крайнем Севере, в Западной Сибири и Якутии.

Содержание газового конденсата по отдельным месторождениям колеблется от 52 до 300 г и выше на 1 м3 добываемого природного газа.

В зависимости от компонентного состава природного газа конденсат содержит до 20 % легких углеводородных газов (метана, этана, пропана и бутана).

Стабильный газовый конденсат нашел широкое применение как сырье для производства автомобильного бензина, дизельного и реактивного топлива.

В среднем выход ароматических углеводородов при каталитическом реформинге фракций газового конденсата на 20... 25 % выше, чем из соответствующих фракций, полученных при переработке нефти.

Содержание светлых нефтепродуктов (бензиновых и дизельных фракций) в газовых конденсатах составляет 90... 100 %, в то время как в нефти их не больше 30... 40 %.

Газовые конденсаты различных месторождений на 60... 80 % состоят из фракций, выкипающих до 200 °С. Плотность конденсатов колеблется от 0,676 до 0,791 г/см3, их кинематическая вязкость составляет при 20 °С от 0,540 до 2,02 мм2/с, температура застывания изменяется в пределах от —5 до —70 °С.

На Уренгойском месторождении с 1979 г. действует малогабаритная промышленная установка для переработки конденсата с получением дизельного топлива.

С 1982 г. в городе Дудинка в эксплуатации находится промышленная установка с годовой производительностью по сырью до 50 тыс.т, с помощью которой конденсат разделяется на дизельную и бензиновую товарные фракции.

В настоящее время разработаны малогабаритные установки для переработки конденсата с производительностью по сырью 12, 25 и 50 тыс. т в год.

Для эксплуатации автомобилей с карбюраторными двигателями в районах Уренгойского и Норильского месторождений применяют бензин, вырабатываемый прямой перегонкой из газовых конденсатов.

В настоящее время из газовых конденсатов в России вырабатываются бензины марок АГ-72 и АГ-76 (ТУ 51-126—83) и летний, и зимний бензины А-76 (ТУ 51-03-06—86).

По согласованию с потребителем для повышения октанового числа допускается вводить в газоконденсатный бензин в качестве добавки экстралин в количестве 1,5 % (ТУ 6-02-571—81).

Получаемая с помощью малогабаритной перерабатывающей установки из газоконденсата вместе с дизельным топливом бензиновая фракция с выходом порядка 50 % на сырье, за исключением октанового числа (68...72 по моторному методу), полностью соответствует требованиям ГОСТ 2084—77.

Водород

В настоящее время ведутся работы по применению в качестве топлива для автомобилей водорода, а также его смеси с бензином. Водород самый легкий элемент, даже в жидком состоянии он примерно в 14 раз легче воды.                                

Водородовоздушная смесь воспламеняется при содержании водорода от 4 до 74 %. В то же время из-за низкой теплотворной способности водородовоздушной смеси мощность работающего на ней двигателя на 15...20 % ниже, чем при работе на бензине. При поступлении водорода непосредственно в цилиндр двигателя в такте всасывания или в начале такта сжатия падения мощности можно избежать. Однако в этом случае необходимо значительное изменение конструкции системы подачи питания и самого двигателя.

При использовании водорода в качестве добавки к бензиновоздушной смеси не требуется изменения конструкции двигателя. Если же бензин добавлять на режиме холостого хода при малых и средних нагрузках, то обеспечиваются оптимальные мощностные и динамические показатели автомобиля. Причем если обычный расход бензина составляет 12,2 кг на 100 км, то в данном случае oн снизится до 5,5 кг, а расход водорода составит всего 1,8 кг. Следовательно, 6,7 кг бензина заменяются 1,8 кг водорода, т.е. экономится 50...55 % бензина. При этом концентрация оксида углерода в отработавших газах снижается в 13 раз, оксидов азота — в 5 paз, углеводородов — на 30 %.

По предложениям ученых при городском режиме работы ocновным топливом для автомобиля должен быть водород, а бензин должен использоваться как добавка для стабилизации горения воздуха на режиме холостого хода, малых и средних нагрузках. При эксплуатации же автомобиля на трассе (при средних и полных нагрузках) двигатель должен работать на бензине с минимальной добавкой водорода.

Использование в качестве топлива для автомобилей бензиноводородных смесей в условиях интенсивного городского движения позволяет экономить топливо нефтяного происхождения и при этом снижать загрязнение окружающей среды токсичными продуктами отработавших газов. Следует также иметь в виду, что стоимость водородного топлива не выше, чем стоимость других синтетических топлив.

Известно, что жидкий водород занимает в 3,5 раза больший объем, чем эквивалентное по выделяемой энергии количество бензина, что усложняет его хранение и распределение. Необходима также надежная теплоизоляция баков, так как температура жидкого водорода —253 °С. Поэтому в качестве емкостей для транспортирования и хранения водорода приходится использовать криогенные баки с двойными стенками, пространство между которыми заполнено изолирующими материалами.

Получают водород электролизом, термической диссоциацией и фотолизом воды, термохимическим способом из гидрида магния с добавкой 5 % никелевого катализатора при нагревании до 257 °С (порошкообразный гидрид магния занимает в 4,6 раза больший объем, чем эквивалентное количество бензина), что довольно сложно.

Учитывая, что смесь газообразного водорода с кислородом воздуха в широком диапазоне концентраций образует гремучий газ, который в закрытых емкостях или помещениях горит очень быстро при значительном повышении давления, создавая возможность взрыва и разрушений, необходима полная герметизация топливоподающей системы автомобиля и организация сброса избыточного давления водорода в баке с его последующей нейтрализацией на каталитических дожигателях. Специальная система, исключающая утечки жидких и газообразных фаз топлива, требуется и для заправки автомобиля жидким водородом.

Для комбинированного питания двигателя бензиноводородной смесью при невысоком содержании водорода (в пределах 20 %) возможно его использование в сжатом виде. Включение и отсечка подачи водорода в этом случае не вызывают затруднений и обычно производятся с помощью электромагнитного клапана.

В качестве наиболее перспективной формы использования водорода рассматриваются вторичные энергоносители, например водород, аккумулированный в составе металлогидридов. В этом случае успешно решается проблема безопасности эксплуатации водородного топлива и обеспечивается возможность создания приемлемого энергозапаса без высоких давлений или криогенных температур.

Выделение водорода происходит при подогреве гидридов горячей жидкостью из системы охлаждения или непосредственно отработавшими газами. Для зарядки гидридного аккумулятора через восстановленный металлический компонент пропускается водород под небольшим давлением и одновременно отводится образующееся тепло. Процесс зарядки может повторяться несколько тысяч циклов без ухудшения энергоемкости аккумулятора. В случае аварии и разрушения наружной оболочки емкости для хранения часть водорода быстро улетучивается, вызывая понижение температуры гидрида и прекращение выделения водорода. Благодаря этому, гидридный аккумулятор водорода во многих отношениях безопаснее бака с бензином.

Объемная энергоемкость лучших гидридов приближается к уровню энергоемкости жидкого водорода, т.е. объем гидридного бака может быть меньше объема криогенного бака для жидкого водорода. Масса же самого гидридного блока примерно на порядок выше массы необходимого жидкого водорода из-за значительной плотности металлического носителя. Тем не менее суммарные массы гидридной и жидководородной топливных систем соизмеримы вследствие большой массы криогенных баков.

Гидридный аккумулятор не требует особого ухода, быстро заряжается, его себестоимость ниже, а срок службы больше, чем у аккумуляторных батарей.                                  

Автомобили с гидридными аккумуляторами наиболее целесообразно использовать в городских условиях, где они могут успешно конкурировать с обычными автомобилями и электромобилями [4].

 

Смазочные масла

Моторные масла

Моторное масло может длительно и надежно выполнять свои функции, обеспечивая заданный ресурс двигателя, только при точном соответствии его свойств тем термическим, механическим и химическим воздействиям, которым масло подвергается в смазочной системе двигателя и на поверхностях смазываемых и охлаждаемых деталей. Взаимное соответствие конструкции двигателя, условий его эксплуатации и свойств масла – одно из важнейших условий достижения высокой надежности двигателей. Современные моторные масла должны отвечать многим требованиям, главные из которых перечислены ниже:

•снижение трения и износа трущихся деталей двигателя за счет создания на их поверхностях прочной масляной пленки;

•уплотнение зазоров в сопряжениях, и в первую очередь деталей цилиндро-поршневой группы (ЦПГ);

•отвод тепла от трущихся деталей, удаление продуктов износа из зон трения;

•защита рабочих поверхностей трущихся деталей от коррозии продуктами окисления масла и сгорания топлива;

•предотвращение всех видов отложений (нагары, лаки, зольные отложения).

Эксплуатационные требования к моторным маслам:

•оптимальная вязкость, определяющая надежную и экономичную работу агрегатов на всех режимах;

•хорошая смазывающая способность;

•устойчивость к испарению, вспениванию, выпадению присадок;

•отсутствие коррозии и коррозионных износов;

•малый расход масла при работе двигателя;

•большой срок службы масла до замены без ущерба для надежности двигателя;

•сохранение качества при хранении и транспортировке.

Для выполнения этих требований моторные масла обладают рядом свойств, к важнейшими из которых относятся вязкостные и низкотемпературные.

Вязкость — свойство масла, связанное с внутренним трением между его слоями. Она уменьшается с ростом температуры масла и наоборот. Диапазон рабочих температур всесезонных моторных масел составляет от -35°С (холодный пуск зимой) до +150°-180°С (температура масла в поддоне картера двигателя летом при его работе с полной нагрузкой), что приводит к изменению вязкости в сотни раз. Если она будет слишком низкой при высоких температурах, прочность масляной пленки между трущимися поверхностями и давление в системе смазки будут недостаточными. Это приведет к увеличению износа пар трения. Чрезмерно высокая вязкость при отрицательных температурах может привести к тому, что стартер не прокрутит коленвал, будет невозможен пуск двигателя. Возможно также масляное "голодание" на первых минутах его работы из-за того, что масло не будет прокачиваться по системе смазки [3].

Температура масла в двигателе зависит от температуры окружающего воздуха и конструкции ДВС. Чем теплее на улице, тем больше оно нагрето, несмотря на то, что температура охлаждающей жидкости в двигателе поддерживается в определенных пределах.

В связи с вышеперечисленным, масла разбиты на классы по вязкости (см. ниже), для каждого из которых рекомендуются определенные температурные диапазоны применения, несколько различающиеся для разных моделей двигателей.

Зимние масла обладают небольшой вязкостью для обеспечения холодного пуска двигателя при низких температурах. Они не обеспечивают надежного смазывания двигателя в летних условиях эксплуатации.

Летние масла, благодаря большой вязкости, надежно смазывают двигатель при высоких температурах, но не обеспечивают холодный пуск при температуре окружающего воздуха ниже 0°С.

Всесезонные масла при низких температурах обладают вязкостными свойствами зимних, а при высоких — летних масел. Для достижения таких вязкостно-температурных характеристик маловязкие масла загущают специальными присадками, позволяющими им меньше "разжижаться" при высоких и "густеть" при низких температурах. Летние и зимние масла практически вытеснены всесезонными, так как нет необходимости заменять их при наступлении другого сезона. Кроме того, эти масла могут обладать энергосберегающими свойствами.

От вязкости зависят режим смазки, отвод тепла от рабочих поверхностей, уплотнение зазоров, энергетические потери в двигателе, быстрота запуска двигателя и т.д.

Вязкость моторных масел измеряют в следующих единицах:

•кинематическая вязкость ν - 1 мм2/c= сСт (сантистокс);

•динамическая вязкость т) - 1 Па-с=10 П (Пуаз); 1 МПа-с=1 сП (сантипуаз).

На вязкость моторных масел существенно влияет температура. При ее снижении вязкость резко увеличивается. Так, в интервале температур от 100 до 0 °С вязкость различных масел может возрастать в 300 раз и более (табл. 17).

Таблица 17










Последнее изменение этой страницы: 2018-04-12; просмотров: 464.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...