Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Цветность комплексных соединений




Многие комплексные соединения в кристаллическом состоянии и водном растворе отличаются яркой окраской. Так, водный раствор, содержащий катионы [Cu(NH3)4]2+, окрашен в интенсивно синий цвет, катионы [Ti(H2O)6]3+ придают раствору фиолетовую окраску, а катионы [Co(NH3)5H2O]2+ - красную. Теория кристаллического поля позволяет объяснить появление той или иной окраски у комплексных соединений.

Если через раствор или кристаллический образец вещества пропускать свет видимой части спектра, то в принципе возможны три варианта физического поведения образца: отсутствие поглощения света любой длины волны (образец вещества бесцветен, хотя может иметь полосы поглощения в ультрафиолетовой области спектра); полное поглощение света во всем интервале длин волн (образец будет казаться черным); наконец, поглощение света только определенной длины волны (тогда образец будет иметь цвет, дополнительный к поглощенному узкому участку спектра). Таким образом, цвет раствора или кристаллов определяется частотой полос поглощения видимого света.                                                                                             Поглощение квантов света комплексами (например, имеющими октаэдрическое строение) объясняется взаимодействием света с электронами, находящимися на de-подуровне, сопровождаемое их переходом на вакантные орбитали dg-подуровня.                                                                                                         Например, при пропускании света через водный раствор, содержащий катионы гексаакватитана(III) [Ti(H2O)6]3+, обнаруживается полоса поглощения света в желто-зеленой области спектра (20300 см-1, l » 500 нм). Это связано с переходом единственного электрона комплексообразователя с de-АО на dg-подуровень:

Поэтому раствор, содержащий [Ti(H2O)6]3+, приобретает фиолетовый цвет (дополнительный к поглощенному желто-зеленому).                                   Раствор соли ванадия [V(H2O)6]Cl3 имеет зеленый цвет. Это также обусловлено соответствующими переходами электронов при поглощении ими части энергии светового луча. В основном состоянии, при электронной конфигурации ванадия(III) 3d2, два неспаренных электрона занимают de-подуровень:

Существует всего два варианта перехода двух электронов на dg-подуровень: либо оба электрона занимают dg-АО, либо только один из них. Любые другие переходы электронов, связанные с уменьшением суммарного спина, запрещены.
Указанным переходам электронов, получивших избыточную энергию, соответствует полоса поглощения около 400 нм в спектре поглощения раствора хлорида гексаакваванадия(III). Поглощение пурпурно-фиолетовой области спектра дает дополнительный цвет раствора – ярко-зеленый.              Если комплексообразователь имеет электронную конфигурацию d0 или d10, то переходы электронов с de- на dg-подуровень или наоборот невозможны либо из-за отсутствия электронов, либо из-за отсутствия вакантных орбиталей. Поэтому растворы комплексов с такими комплексообразователями, как Sc(III) (3d0), Cu(I) (3d10), Zn(II) (3d10), Cd(II) (4d10) и т.п., не поглощают энергии в видимой части спектра и кажутся бесцветными.                                                                                 Избирательность поглощения света зависит не только от комплексообразователя и степени его окисления, но и от вида лигандов. При замене в комплексном соединении лигандов, находящихся в левой части спектрохимического ряда, на лиганды, создающие сильное электростатическое поле, наблюдается увеличение доли энергии, поглощаемой электронами из проходящего света и как следствие – уменьшение длины волны соответствующей полосы поглощения. Так, водный раствор, содержащий катионы тетрааквамеди(II) [Cu(H2O)4]2+, окрашен в голубой цвет, а раствор сульфата тетраамминмеди(II) [Cu(NH3)4]2+ имеет интенсивно синюю окраску.

 


Контрольные вопросы

 

 

1. Какие соединения называются комплексными?

2. Назвать характерные лиганды и комплексообразователи.

3. Привести примеры аквакомплексов, аммиакатов, ацидокомплексов.

4. Какова сущность явления цис-транс-изомерии?

 

Вопросы к главе
Устойчивость комплексных соединений в растворе

1. Рассмотрите возможность электролитической диссоциации в водном растворе комплексных соединений:

а) гидроксид диамминсеребра(I)
б) тетрахлороплатинат(II) калия
в) цис-дихлородиамминплатина
г) транс-дихлородиамминплатина
д) гексацианоферрат(III) калия
е) тетрагидроксоцинкат(II) натрия
ж) бис(циклопентадиенил)кобальт

Почему некоторые из этих соединений диссоциируют полностью, а другие практически не диссоциируют?

2. Укажите, какие из комплексных соединений являются неэлектролитами и сильными электролитами в водном растворе:

а) K2[PtCl6]; [Pt(NH3)2Br4]; K3[Fe(CN)6]
б) [Pt(NH3)2(OH)2]Cl2; [Co(NH3)3(NO2)3]; H2[SiF6]
в) [Cr(H2O)5Cl]Cl2; [Ag(N2H4)Br]; Na2[Zn(CN)4]
г) [Cu(NH3)4](OH)2; [Ag(NH3)2]Br; [Fe(C5H5)2]

Для сильных электролитов составьте уравнения электролитической диссоциации.

3. Составьте уравнения ступенчатых реакций образования комплексов и запишите для них выражения ступенчатых констант устойчивости Kn:

а) тетрагидроксоцинкат(II)-ион
б) тетраиодомеркурат(II)-ион
в) катион диамминмеди(I)
г) катион трис(этилендиамин)никеля(II)
д) бис(тиосульфато)аргентат(I)-ион

Пользуясь справочником, приведите значения ступенчатых констант устойчивости (lg Kn) этих комплексов и сделайте вывод об устойчивости комплексов - реагентов и продуктов.

4. Составьте уравнения ступенчатых реакций образования комплексов свинца(II) и запишите для них выражения ступенчатых констант устойчивости Kn:

а) трифтороплюмбат(II)-ион
б) тетрафтороплюмбат(II)-ион
в) трифтороплюмбат(II)-ион
г) трис(тиоцианато)плюмбат(II)-ион
д) трихлороплюмбат(II)-ион
е) тетраиодоплюмбат(II)-ион
ж) тетракис(тиоцианато)плюмбат(II)-ион

Пользуясь справочником, приведите значения ступенчатых констант устойчивости (lg Kn) этих комплексов и сделайте вывод об устойчивости комплексов -- реагентов и продуктов.

5. Составьте уравнения ступенчатых реакций образования следующих комплексов из катионов центральных атомов и лигандов и запишите для них выражения общих констант устойчивости βn:

а) катион тетраамминмеди(II) и катион бис(этилендиамин)меди(II)
б) гексацианоферрат(III)-ион и гексацианоферрат(II)-ион
в) трииодомеркурат(II)-ион и тетраиодомеркурат(II)-ион
г) тетраиодокадмат(II)-ион и тетраиодоцинкат(II)-ион

Какой из комплексов каждого набора более устойчив? При ответе используйте справочные данные.

6. Пользуясь справочными данными, определите устойчивость следующих комплексов:

а) [Co(NH3)6]3+ и [Co(en)3]3+
б) [Ni(N2H4)6]2+ и [Ni(en)3]2+

Объясните причину различия в устойчивости комплексов в каждом наборе.

7. В воду вводят следующие комплексы:

а) катион тетрамминмеди(II)
б) тетрабромоплюмбат(II)-ион
в) гексагидроксохромат(III)-ион
г) катион гексаамминкобальта(II)
д) тетраиодоцинкат(II)-ион
е) гексакис(тиоцианато)феррат(III)-ион

 

Протекают реакции акватации (замещение лиганда молекулами воды). Укажите наиболее вероятные по составу продукты реакции. Ваш выбор обоснуйте справочными данными.

8. Составьте молекулярные и ионные уравнения реакций полного замещения лигандов в водном растворе:

а) [Fe(H2O)6](ClO4)3 + Na2C2O4 =
б) [Co(NH3)4Cl2]Cl + en =
в) [Ni(H2O)6]SO4 + NH3 . H2O =
г) [K(H2O)6][Cr(H2O)6](SO4)2 + NaOH =
д) [Cd(en)2]Cl2 + NaCN =
е) (NH4)2[PtBr4] + KOH =

В каких условиях реакции замещения лигандов проходят полнее?

9. Проводятся следующие реакции замещения лигандов в водном растворе: а) [Zn(H2O)4]SO4 + NH3 . H2O
б) [Cu(H2O)4](NO3)2 + NH3 . H2O
в) [Be(H2O)4](ClO4)2 + KF
г) [In(H2O)6](NO3)3 + NaBr
д) [In(H2O)6](NO3)3 + NaCl
е) [In(H2O)6](NO3)3 + NaI + NaF

Укажите, образование каких продуктов наиболее вероятно. При ответе используйте справочные данные.

10. Составьте уравнения реакций полного замещения лигандов в водном растворе:

а) K3[RhCl6] + K2C2O4 =
б) [Co(NH3)5Cl]Cl2 + en =
в) [Ni(H2O)6]2+ + NH3 . H2O =
г) [Cr(H2O)6]3+ + OH- =
д) [Ni(en)2]SO4 + KCN =
е) K2[PtCl4] + N2H4 =

 

Вопросы к главе
Изомерия комплексных соединений

1. Определите тип изомерии в наборах комплексных соединений:

а) [Cr(H2O)6]Cl3 и [Cr(H2O)5Cl]Cl2 . H2O
б) [Co(NH3)5Br]SO4 и [Co(NH3)5SO4]Br
в) [Pt(NH3)5Cl]Cl3 и [Pt(NH3)4(Cl)2]Cl2 . NH3
г) транс-[Cr(en)2(Cl)2]Cl и цис-[Cr(en)2(Cl)2]Cl
д) [Pt(NH3)4SO4](OH)2 и [Pt(NH3)4(OH)2]SO4
е) [Co(py)2(Cl)2]Cl и [Co(py)Cl3] . py
ж) цис-K2[Pt(Cl)2(NO2)4] и транс-K2[Pt(Cl)2(NO2)4]
з) [Co(NH3)4Cl(NO3)]Cl и [Co(NH3)4(Cl)2]NO3

2. Составьте формулы всех возможных комплексных соединений, комбинируя один CoIII, x NH3, y NO2- и (при необходимости) z K+ (для атома CoIII КЧ = 6). Назовите эти соединения.

3. Из водного раствора, содержащего 0,04 моль комплексного соединения состава PtCl4 . 3NH3, при добавлении AgNO3 осаждается 0,04 моль AgCl. По результатам этого опыта составьте координационную формулу исходного соединения.

4. Из водного раствора, содержащего 0,2 моль комплексного соединения состава CoBr3 . 5NH3, при добавлении AgNO3 осаждается 0,4 моль AgBr. По результатам этого опыта составьте координационную формулу исходного соединения.

5. Для осаждения хлорид-ионов, составляющих внешнюю сферу комплексного соединения состава CrCl3 . 5H2O, из 100 мл 0,02М его раствора, потребовалось 20 мл 0,2М раствора AgNO3. По результатам этого опыта составьте координационную формулу исходного соединения.

6. Составьте формулы всех возможных координационных изомеров, исходя из состава {Co(NO2)3 . 3NH3}n , где для атома Co КЧ = 6 и n = 1, 2, 3, 4, 5. Назовите эти комплексные соединения.

7.Составьте пространственные изображения цис- и транс-изомеров следующих комплексов:

а) [Pt(NH3)2(N2H4)2]
б) [Co(NCS)3(NO2)3]3-
в) [Co(NH3)4(NO2)2]
г) [Co(en)2(Br)2]+
д) [Cr(NH3)4(Cl)2]+
е) [Pt(NH3)2(NCS)2]
ж) [Ph(py)3Cl3]

8. Комплексное соединение [Pt(NH3)2(Cl)2(NO2)2] имеет пять геометрических изомеров. Составьте их графические изображения.

 






















































Решение типовых задач

 

1. Констаната нестойкости иона [Ag(CN)2]- составляет 1∙10-21. Вычислить концентрацию ионов серебра в 0,05М растворе К[Ag(CN)2], содержащем, кроме того, 0,01 моль/л KCN.

                                     Решение.

Вторичная диссоциация комплексного иона протекает по уравнению:

           [Ag(CN)2]-  ↔ Ag+ + 2CN-                                                  

       В присутствии избытка ионов CN-, создаваемого в результате диссоциации KCN (которую можно считать полной), это равновесие смещено влево настолько, что количеством ионов CN- , образующимся при вторичной диссоциации, можно пренебречь. Тогда [CN-] = C KCN = 0,01моль/л. По той же причине равновесная концентрация ионов [Ag(CN)2]- может быть приравнена общей концентрации комплексной соли (0,05 моль/л).

По условию задачи:

                                      [Ag+] [CN-]2

           Kнест =  ---------------------- = 1∙10-21 

                                              [Ag(CN)2]- 

Отсюда выражаем концентрацию ионов Ag+.

                          1∙10-21 ∙[Ag(CN)2]-

          [Ag+] = -----------------------

                                     [CN-]2

Подставив значения концентраций ионов CN- и [Ag(CN)2]-, получим:

 

                           1∙10-21 ∙ 0,05

          [Ag+] = ------------------ = 5∙10-19 моль/л

                                  (0,01)2

Пример 2. Растворы простых солей кадмия образуют со щелочами осадок гидроксида кадмия Cd(OH)2, а с сероводородом – осадок сульфида кадмия CdS. Чем объяснит, что при добавлении щелочи к 0,05М раствору K2[Cd(CN)4], содержащему 0,1 моль,л KCN, осадок не образуется, тогда как при пропускании через этот раствор сероводорода выпадает осадок CdS? Константу нестойкости иона [Cd(CN)4]2- принять равной 7,8∙10-18.

                        Решение:

Условия образования осадков Cd(OH)2 CdS могут быть записаны следующим образом:

         [Cd2+][OH-]2 > ПР Cd(OH)2 = 4,5 ∙10-15

         [Cd2+][S2-] > ПР CdS = 8 ∙ 10-27

       В растворе комплексной соли при заданных условиях концентрация ионов Cd2+ вычисляется по уравнению (см. пример 1):

                            Kнест.  ∙ [Cd(CN)4]2-            7,8∙10-18 ∙0,05

[Cd2+] =  --------------------------- =   ---------------------- = 3,9∙10-15 моль/л

 

                                          [CN-]4                             (0,1)4

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 559.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...