Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение прямой в пространстве, проходящей




через две точки.

 

       Если на прямой в пространстве отметить две произвольные точки M1(x1, y1, z1) и M2(x2, y2, z2), то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

.

       Кроме того, для точки М1 можно записать:

.

       Решая совместно эти уравнения, получим:

.

Это уравнение прямой, проходящей через две точки в пространстве.

 

 

Общие уравнения прямой в пространстве.

 

       Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.

       Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением:

× + D = 0, где

- нормаль плоскости; - радиус- вектор произвольной точки плоскости.

       Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).

 

       Тогда общие уравнения прямой в векторной форме:

       Общие уравнения прямой в координатной форме:

 

       Практическая задача часто состоит в приведении уравнений прямых в общем виде к каноническому виду.

       Для этого надо найти произвольную точку прямой и числа m, n, p.

 

       При этом направляющий вектор прямой может быть найден как векторное произведение векторов нормали к заданным плоскостям.

 

       Пример. Найти каноническое уравнение, если прямая задана в виде:

 

       Для нахождения произвольной точки прямой, примем ее координату х = 0, а затем подставим это значение в заданную систему уравнений.

, т.е. А(0, 2, 1).

 

       Находим компоненты направляющего вектора прямой.

       Тогда канонические уравнения прямой:

 

Пример. Привести к каноническому виду уравнение прямой, заданное в виде:

 

       Для нахождения произвольной точки прямой, являющейся линией пересечения указанных выше плоскостей, примем z = 0. Тогда:

;

2x – 9x – 7 = 0;

x = -1; y = 3;

       Получаем: A(-1; 3; 0).

Направляющий вектор прямой: .

 

Итого:

 

 

Угол между плоскостями.

 

 

 


                                                                              

                                                                                         j1

                                                      j                              0

                                                                   

 

 

       Угол между двумя плоскостями в пространстве j связан с углом между нормалями к этим плоскостям j1 соотношением: j = j1 или j = 1800 - j1, т.е.

cosj = ±cosj1.

       Определим угол j1. Известно, что плоскости могут быть заданы соотношениями:

, где

(A1, B1, C1), (A2, B2, C2). Угол между векторами нормали найдем из их скалярного произведения:

.

       Таким образом, угол между плоскостями находится по формуле:

 

       Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.

 


Условия параллельности и перпендикулярности

плоскостей.

 

       На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей.

           

       Для того, чтобы плоскости были перпендикулярны необходимо и достаточно, чтобы косинус угла между плоскостями равнялся нулю. Это условие выполняется, если:

 

.

 

       Плоскости параллельны, векторы нормалей коллинеарны: ïï .Это условие выполняется, если: .

 

 

Угол между прямыми в пространстве.

 

       Пусть в пространстве заданы две прямые. Их параметрические уравнения:

l1:

l2:

 

       Угол между прямыми j и угол между направляющими векторами j этих прямых связаны соотношением: j = j1 или j = 1800 - j1. Угол между направляющими векторами находится из скалярного произведения. Таким образом:

.

 

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 167.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...