Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Лекция 2. Классификация систем автоматического регулирования




 

Системы автоматического регулирования, применяемые в современной технике, весьма разнообразны. Быстрое расширение функционального назначения функционального назначения автоматических систем, ставшее возможным, в частности благодаря внедрению вычислительной техники, увеличивает число реализуемых классов систем. В этих условиях дать законченную подробную классификацию систем автоматического регулирования практически невозможно. Классификации, с успехом применявшиеся в недавнем прошлом, становятся в настоящее время слишком узкими, не охватывающими новых разрабатываемых и реализуемых систем.

Всякая классификация основана на определенных классификационных признаках. С точки зрения общности классификации систем автоматического регулирования наиболее удобным классификационным признаком является используемая информация об объекте регулирования. Следует отметить, что почти все автоматические системы представляют собой нелинейные устройства, которые содержат как переменные, так и распределенные параметры, в которых значение переменных в данный момент времени может зависеть не только от текущих, но и прошлых значений этих переменных.

Каждая автоматическая система характеризуется алгоритмом функционирования - совокупностью предписаний, определяющих характер изменения управляемой величины в зависимости от воздействия.

В зависимости от характера изменения составляющих задающего воздействия автоматические системы разделяют на четыре класса:

- системы автоматической стабилизации, в которых задающее воздействие представляет собой постоянную величину, а регулируемая величина автоматически поддерживается неизменной при произвольном изменении нагрузки и внешних условий. Нагрузка объекта регулирования (момент нагрузки на валу электродвигателя, нагрузка гeнератора) в стабилизирующих системах обычно является основным возмущающим воздействием, наиболее резко влияющим на регулируемую величину;

- системы программного регулирования, в которых задающее воздействие и регулируемая величина изменяются по заранее заданному закону. Программную автоматическую систему можно рассматривать как систему стабилизации, в которой задача стабилизации усложняется задачей изменения регулируемой величины по заданной программе. Изменение регулируемой величины по пpoгpaммe достигается добавлением к системе некотоpoгo элемента ­ программного устройства, изменяющего задающее воздействие во времени по заранее определенному закону;

- следящие системыпредполагают изменение регулируемой величины в соответствии с изменением задающего воздействия, закон изменения которого является неизвестной функцией. Таким образом, следящая система, как и программная система, воспроизводит задающее воздействие. Однако это воздействие в следящей системе изменяется не по заранее заданной программе, а произвольно. Например, антенна радиолокатора поворачивается­ следуя за самолетом, траектория движения котopoгo заранее неизвестна, т. е. «следит» за ним. Отсюда происходит и название следящей системы. Задающие воздействия и регулируемые величины следящих систем могут иметь разнообразный характер по своей физической природе. Причем регулируемая величина по своей физической природе может отличаться от задающего воздействия.

-системы оптимального регулированияобеспечивают оптимальное согласно тому или иному критерию оптимальности поддержание регулируемой величины.

В зависимости от того, какой математической моделью описываются процессы в автоматических системах, они разделяют на:

- линейные автоматические системы, математическая модель которых составлена из линейных или линеаризированных дифференциальных уравнений. Если в уравнении динамики какого-либо звена линейной автоматической системы имеется хотя бы один или несколько переменных во времени коэффициентов, то получается линейная автоматическая система с переменными параметрами. Если какое-либо звено описывается линейными уравнениями в частных производных, то автоматическая система будет линейной автоматической системой с распределенными параметрами. В отличие от этого обыкновенная линейная автоматическая система является автоматической системой с сосредоточенными параметрами. Если динамика какого-либо звена автоматической системы описывается линейным уравнением с запаздывающим аргументом, то автоматическая система называется линейной автоматической системой с запаздыванием;

- нелинейные автоматические системы, математическая модель которых составлена из нелинейных дифференциальных уравнений. К нелинейным автоматическим системам относятся все автоматические системы, в звеньях которых имеются статические характеристики любого из множества видов нелинейности. Нелинейными могут быть автоматические системы с переменными параметрами, с распределенными параметрами, с запаздыванием, импульсные и цифровые автоматические системы, если в них где-то нарушается линейность уравнения динамики.

 

Рис 2.1. Классификация систем автоматического регулирования

Каждая автоматическая система состоит из целого ряда звеньев, соединенных соответствующим образом между собой. Каждое отдельно взятое звено имеет вход и выход определяющих воздействие и передачу информации с одного звена на другое. В общем случае любое звено может иметь несколько входов и выходов. Входная и выходная величины могут иметь любую физическую природу.

В процессе работы автоматической системы входные и выходные величины изменяются во времени. Динамика процесса преобразования сигналов в данном звене описывается некоторым уравнением, связывающим выходную переменную со входной переменной. Совокупность уравнений и характеристик всех звеньев описывает динамику процессов управления или регулирования во всей системе в целом.

Основными признаками деления автоматических систем на большие классы по характеру внутренних динамических процессов являются следующие:

- непрерывность или дискретность динамических процессов во времени;

- линейность или нелинейность уравнений, описывающих динамику процессов регулирования.

В зависимости от характера изменения управляющих сигналов автоматические системы разделяют на три класса:

- непрерывные (аналоговые) системы, которые описываются обыкновенными дифференциальными уравнениями и в процессе регулирования структура всех связей в системе остается неизменной. Сигналы на выходе отдельных звеньев такой системы являются непрерывными функциями воздействий и времени. Между звеньями на входе и выходе автоматической системы существует непрерывная функциональная связь. При этом закон изменения выходной величины во времени может быть произвольным, в зависимости от формы изменения входной величины и от вида уравнения динамики звена. Чтобы автоматическая система в целом была непрерывной, необходимо прежде всего, чтобы статические характеристики всех звеньев были непрерывными;

- дискретные (цифровые) системы, которые описываются дифференциально-разностными уравнениями и в них через дискретные промежутки времени происходит размыкание или замыкание цепи управляющего воздействия. В дискретных системах размыкание цепи воздействия производится принудительно и периодически специальными прерывающими устройствами. Такие системы содержат импульсные элементы и осуществляют квантование сигналов как по уровню, так и по времени. Звено, преобразующее непрерывный входной сигнал в последовательность импульсов, называется импульсным. Если последующее звено автоматической системы тоже дискретное, то для него не только выходная, но и входная величины будет дискретной. К дискретным автоматическим системам относятся автоматические системы импульсного регулирования, а также автоматические системы управляющими вычислительными машинами. Эти последние дают результат вычисления на выходе дискретно, через определенные промежутки времени, в виде чисел для отдельных дискретных числовых значений выходной величины;

- релейные (дискретно-непрерывные) системы, которые описываются обоими видами уравнений. В этих системах размыкание или замыкание цепи воздействия осуществляется одним из звеньев системы при непрерывном значении входного воздействия. Размыкание или замыкание осуществляется с помощью реле или звена, имеющего релейную характеристику. Реле срабатывает при определенных значениях воздействий на его чувствительный орган. Релейные системы осуществляют квантование сигналов по времени. Статическая характеристика релейного звена имеет точки разрыва.

Каждый из этих трех классов автоматических систем разделяют на подклассы:

- стационарные автоматические системыс сосредоточенными или распределенными параметрами;

- нестационарные автоматические системы с сосредоточенными или распределенными параметрами.

При исследовании, расчете и синтезе автоматических систем нужно иметь в виду, что наиболее полно разработаны теория и различные прикладные методы для обыкновенных линейных автоматических систем. Поэтому в интересах простоты расчета всегда желательно сводить задачу к такой форме, чтобы максимально использовать методы исследования обыкновенных линейных автоматических систем. Обычно уравнения динамики всех звеньев автоматической системы стараются привести к обыкновенным линейным, и только для некоторых звеньев, где это недопустимо или где специально вводится особое линейное или нелинейное звено, учитываются эти особые их свойства.

Однако это вовсе не значит, что при проектировании новых автоматических систем нужно стремиться к обыкновенным линейным автоматическим системам. Наоборот, совершенно очевидно, что обыкновенные линейные автоматические системы обладают ограниченными возможностями. Введение особых линейных и нелинейных звеньев может придать автоматической системе лучшие качества. Особенно богатыми возможностями обладают автоматические системы со специально вводимыми нелинейностями и дискретные автоматические системы, в том числе с управляющими ЭВМ и микропроцессорные автоматические системы.

По типу и количеству сигналов системы автоматического регулирования подразделяются:

- одноконтурные системы, в которых имеется одна регулируемая величина;

- многоконтурные системы, в которых имеется несколько главных или местных обратных связей;

- системы несвязного регулирования предназначены для регулирования различных величин, не связаны друг с другом и могут взаимодействовать только через общий объект регулирования.

а) в зависимых системах несвязного регулированияизменение одной из регулируемых величин влияет на изменение других. Поэтому в таких системах процессы регулирования нельзя рассматривать изолировано друг от друга;

б) в независимых системах несвязного регулирования изменение одной из регулируемых величин не зависит от изменения остальных;

- системы связного регулирования предполагают наличие нескольких регуляторов, регулируемые величины которых имеют друг с другом взаимные связи, осуществляемые помимо объекта регулирования.

В зависимости от наличия или отсутствия ошибки регулирования САР подразделяются на:

- статические системы это такие системы, которые предполагают наличие постоянной ошибки регулирования (статизма). Характерной особенностью работы статической системы является то, что равновесие системы может быть достигнуто при различных значениях регулируемой величины и каждому значению регулируемой величины соответствует единственное значение регулирующего органа;

- астатические системы это такие системы, которые при различных значениях внешнего воздействия на объект отклонение регулируемой величины от требуемого значения отсутствует. В таких системах равновесное состояние имеет место при одном единственном значении регулируемой величины, равном заданному, а регулирующий орган должен иметь возможность занимать различные положения при одном и том же значении регулируемой величины.

 

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 268.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...