Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Облучение воды ультрафиолетовыми лучами.




Еще в конце прошлого столетия А. Н. Маклаковым было установлено, что короткие ультрафиолетовые лучи обладают бактерицидным действием. Максимально эффективными оказались лучи с длиной волны 250—260 нм, проникающие даже через 25-сантиметровый слой прозрачной и бесцветной воды.

Обеззараживание воды ультрафиолетовыми лучами происходит весьма быстро: при 1—2 минутах облучения погибают вегетативные формы патогенных микроорганизмов. Мутность, а особенно цветность и соли железа, уменьшая проницаемость воды для бактерицидных лучей, замедляют обеззараживание.

Таким образом, необходимой предпосылкой для надежного обеззараживания воды ультрафиолетовыми лучами является ее предварительное осветление и обесцвечивание.

Кипячение воды.

Кипячение является простым и в то же время наиболее надежным методом обеззараживания воды.\Вегетативные формы патогенных микроорганизмов погибают после 20—40-секундного нагревания при температуре 80°, и поэтому в момент закипания вода уже фактически обеззаражена, а при 3—5-минутном кипении имеется полная гарантия ее безопасности даже при сильном загрязнении взвешенными веществами и микробами.

При 30-минутном кипячении погибает подавляющее большинство споровых форм микробов, т. е. достигается стерилизация воды. В то время как хлорирование неэффективно действует на споры сибирской язвы, яйца и личинки гельминтов, кипячение убивает их. При 30-мннутном кипячении разрушается ботулинический токсин.

К факторам, препятствующим и ограничивающим возможность широкого применения кипячения как метода обеззараживания воды, относятся: невозможность применения кипячения для обеззараживания больших количеств воды на водопроводах, ухудшение вкуса воды из-за улетучивания газов, необходимость охлаждения воды и быстрое развитие микроорганизмов в кипяченой воде в случае ее вторичного загрязнения.

При пользовании водой, не прошедшей централизованного' обеззараживания, кипячение часто применяется в быту, в больницах, школах, детских учреждениях, на производствах, железнодорожных станциях и т. д. Для этой цели широкое применение получили кипятильники непрерывного действия с производительностью от 100 до 1000 л/ч. Действие последних основано на перебрасывании кипящей воды из котла в бак, служащий для ее разбора.

14. Сравнительная оценка способов профилактики УФ- недостаточности с применением ламп ПРК и ЭУВ.

Существует несколько наиболее распространенных искусственных источников УФ-радиации, на основе которых и создаются приборы, используемые в медицине.Чаще всего используется аргоно-ртутно-кварцевая горелка типа ПРК. В практике используют ПРК-2, ПРК-7, ПРК-4. Возникающее УФ-излучение объясняется возбуждением атомов паров ртути, находящихся в горелке, при пропускании переменного тока. Все большее значение приобретают лампы с избирательным излучением в определенной части спектра, т.к. они обладают более избирательным действием.

Это, например, эритемная увиолевая лампа ЭУВ, бактерицидная увиолевая лампа БУВ. При работе этих ламп создается УФ-излучение с максимумом в спектральной линии 313 нм которое создается слоем люминифора, который возбуждается коротковолновыми УФ-лучами, возникающими при ртутном разряде.

Кроме того, используются ксеноновые лампы, с большим спектром УФ-излучения. Именно с применением данных ламп и горелок конструируются светооблучательные установки и фотарии, о которых будет рассказано ниже. Показания и противопоказания к проведению УФ-облучения у детей и подростков. Показания к проведению УФ-облучения у детей и подростков обширны.Однако нужно помнить, что чувствительность к ультрафиолетовым лучам тем выше, чем меньше возраст ребенка.

Поэтому солнечные ванны детям до одного года противопоказаны. Они делятся на местные и общие. К общим показаниям относятся профилактика солнечной недостаточности, а вместе с тем и гиповитаминоза. профилактика и лечение рахита. профилактика понижения общей сопротивляемости организма в зимне- осенний период. профилактика возникновения инфекций. профилактика понижения умственной и физической работоспособности.К местным показаниям относится эритемотерапия при воспалительных заболеваниях внутренних органов, как , например бронхит. гастрит. ревматизм. тонзиллит. ангина. бронхиальная астма.

При этом практически все авторы утверждают, что УФ-терапия наиболее эффективна именно в детском и подростковом периодах, в связи с тем, что метаболические процессы еще очень лабильны и не до конца сформированы. Кроме этого УФ-облучение используется в хирургии, травматологии, дерматологии.К противопоказаниям при применении УФ-радиации относятся злокачественные опухоли. склонность к кровотечениям. активный туберкулез легких. заболевания крови. кахексия. гипертиреоз.

СКВ. натуральная оспа. недостаточность кровообращения I, II степени. Методы профилактики УФ-недостаточности. При профилактике УФ-недостаточности могут быть использованы различные методы. Использование солнечной радиации как естественного источника УФ-лучей достаточно эффективно, если время пребывания на улице достаточное.В детской практике используются солнечно-воздушные ванны, как элемент не только закаливания, но и проведения профилактики УФ-недостаточности.

Однако нужно помнить, что чувствительность к ультрафиолетовым лучам тем выше, чем меньше возраст ребенка. Поэтому солнечные ванны детям до одного года противопоказаны.Крайне осторожно они назначаются детям от 1 года до 3 лет, и только в более старшем возрасте их проводят достаточно широко, но после предварительного недельного курса ежедневных световоздушных ванн. В рассеянных солнечных лучах достаточно много ультрафиолетовых и сравнительно мало, в отличие от прямого солнечного излучения, инфракрасных лучей, которые вызывают перегревание организма ребенка, что особенно опасно для детей с повышенной нервно-рефлекторной возбудимостью.

В осенне-зимний и весенний периоды прямые солнечные лучи не вызывают перегревания, поэтому попадание их на открытое лицо ребенка не только допустимо, но и необходимо.Летом рекомендуют проводить световоздушные ванны при температуре воздуха 22С и выше для грудных детей и при 20С для детей 1 - 3 лет, лучше в безветренную погоду. Поведение ребенка в момент проведения ванны должно быть активным.

В средней полосе России ванны лучше начинать с 9 до 12 ч дня, в более жарком климате с 8 до 10 ч утра. Продолжительность первой ванны у грудных детей 3 мин, у более старших - 5 мин с ежедневным увеличением до 30 - 40 мин и более.Прямые солнечные ванны после тренировки световоздушными у детей более старшего возраста проводятся не более 15 - 20 мин, всего за лето не более 20 - 30 ванн. Абсолютным противопоказанием к проведению солнечных ванн является температура воздуха 30С. После солнечных ванн, а не до них, детям назначают водные процедуры, причем обязательно нужно вытереть ребенка, даже если температура воздуха высокая, так как при влажной коже происходит переохлаждение детского организма.

Кроме того используют прогулки, игры, экскурсии на свежем воздухе. Так для детей первого года жизни достаточно того, чтобы в зимнее время во время получасовых прогулок два раза в день, были открыты кисти рук и лицо, чтобы предупредить возникновение рахита.

Но при использовании солнечной радиации необходимо соблюдать меры предосторожности, например, температура воздуха не должна быть слишком высокой, чтобы не было теплового удара, а также слишком низкой, чтобы не возникло переохлаждение и т.д. Этого вполне достаточно, чтобы предотвратить возникновение УФ-недостаточности у здоровых детей, в районах с благоприятным климатом, но в некоторых регионах погодные условия не позволяют выполнять данные требования, кроме того детям с различными заболеваниями необходима дополнительное УФ-облучение.

Искусственное ультрафиолетовое излучение, которое еще несколько лет назад широко применяли не только на Севере, но и в средней полосе в первую очередь с целью профилактики рахита, в настоящее время многие авторы либо не рекомендуют вообще назначать детям раннего возраста, либо использовать крайне осторожно, учитывая его возможное канцерогенное действие.

В случаях необходимости используют искусственные источники УФ-радиации. Вне зависимости от конструкции прибора прежде всего необходимо определить биодозу облучения. Для этого используется метод индивидуальной чувствительности и прибор- биодозиметр. За одну биодозу принимают ту дозу УФ- облучения во времени, вызывающую минимальные явления эритемы. При применении приборов могут быть использованы общие и местные методики.При общем облучении обязательным условием является применение защитных очков из темного стекла.

Облучатели устанавливают на уровне верхней трети бедра. На курс здоровым детям назначают 16-20 процедур, ежедневно или через день. Начинают с 18 биодозы и доводят к концу лечения до 3 биодоз. Детям, страдающим различными заболеваниями увеличивают количество процедур до 26-28 процедур и доводят облучение до 4 биодоз, проводя лечение ежедневно.Местную методику используют только при лечении различных заболеваний, а не для профилактики УФ-недостаточности, используют эритемные дозы облучения1-8 биодоз, на расстоянии 50 см. от источника.

В настоящее время используют следующие светооблучательные установки облучатель ртутно- кварцевый с горелкой ПРК-2, в зависимости от методики используется на расстоянии 0,5-1,0 м. Для индивидуального местного или общего излучения. переносной ртутно-кварцевый облучатель с горелкой типа ПРК-4, который может быть использован как дома, так и в палате. облучатель для носоглотки используется только при лечении. лампы для коротковолнового УФ-облучения, с горелками ПРК-4 и длиной волны 254 нм. Используются на расстоянии 20-20 см. в течение 3-4 минут. бактерицидные облучатели с лампами типа БУВ и длиной волны 253.7 нм. Они интересны тем, что могут быть встроены в помещениях, и за 8 часов непрерывной работы такого закрытого облучателя человек получает облучение равное одной биодозе.

Фотарии - это специальные помещения, в которых устанавливают лампу Маяк, с горелкой типа ПРК-7, они предназначены для проведения групповых облучений УФ-лучами искусственных источников.

Возможно облучение 25-30 человек, которые стоят вокруг лампы на расстоянии 2.5-3.0 м. Биодозу они получают в течение 3-4 минут, половину времени облучают переднюю поверхность тела, потом -заднюю. При использовании в качестве источника лампы типа ПРК-2 можно одномоментно облучать 8-10 человек с расстояния 1.5-2.0 м. Различают коридорную и маячную систему фотариев, принципиально друг от друга не отличающихся.При использовании фотариев необходимо не только соблюдение радиационного режима с индивидуальным правильным подбором биодоз, но и определенные микроклиматические условия.

Профилактика УФ-недостаточности в детских учереждениях проводится в фотариях 3 раза в неделю. Заключение. УФ-излучение является очень важным природным фактором, обеспечивающим нормальную жизнедеятельность организма и соответствующие рост и развитие в детском возрасте.Очень важным в профилактике УФ-недостаточности является использование солнечной инсоляции, как естественного источника УФ-лучей, для чего необходима правильная организация режима дня детей и подростков.

15. Гигиеническая оценка люминесцентного освещения.

Существует несколько типов люминесцентных ламп:
- дневного света (ДС)
- белого света (БС)
- холодно-белого света (ХБС)
- тепло-белого света (ТБС)
- с улучшенной цветопередачей (ЛДЦ, ЛТБЦ, ЛХБЦ).
По сравнению с лампами накаливания люминесцентные имеют ряд преимуществ:
- создают рассеянный свет, не дающий резких теней
- характеризуются малой яркостью
- не обладают слепящим действием.
Недостатки:
- нарушают цветопередачу
- создают ощущение сумеречности при низкой освещенности
- во время их работы появляется монотонный шум
- периодичность светового потока (пульсация).
Периодичность светового потока приводит к появлению стробоскопического эффекта – искажению зрительного восприятия направления и скорости движения вращающихся, движущихся или сменяющихся объектов.
При освещении люминесцентными лампами в учебных заведениях обычно используют светильники общего освещения на 2 лампы по 40 Вт.
Количество светильников и мощность ламп выбирают так, чтобы уровни освещенности на рабочих местах в помещении соответствовали установленным гигиеническим нормативам.
Светильники обычно подвешивают на потолке равномерно по всему помещению. Должна быть предусмотрена возможность их раздельного включения.

 

16. Биогеохимические эндемические заболевания.

Биогеохимические провинции – это области на поверхности Земли, в которых в ответ на геохимические факторы (недостаток или избыток определенных химических элементов во внешней среде) у живых организмов возникают соответствующие биологические реакции. Например, для зон подзолистых и дерново-подзолистых почв характерны биогеохимические провинции, связанные с недостаточностью йода, кобальта, кальция, меди и других элементов. Этот дефицит обусловлен большой подвижностью их ионов, легко вымываемых из указанных почв. Экологическая реакция на аномальное содержание в окружающей среде перечисленных элементов проявляется в виде эндемических (местных) заболеваний – зоб, акобольтоз, ломкость костей у животных. Подобные заболевания не встречаются в соседней зоне черноземья.

Имеются также биогеохимические провинции и эндемии, встречающиеся в районах рудных месторождений, солевых отложений, недавно действующих вулканов. Для них обычно характерно избыточное содержание химических элементов в среде. Например, борные биогеохимические провинции и эндемии (среди флоры и фауны) обнаружены в бессточных областях; флюороз человека и животных – в области недавно действующих вулканов, месторождений флюорита и фторапатита.

Изучение биогеохимических условий возникновения эндемий позволяет разрабатывать меры их предупреждения – применение микроудобрений, содержащих медь, бор; использование в пищу йодированной соли; обогащение кормов животных кобальтсодержащими соединениями и т.д.

ЭНДЕМИЧЕСКИЕ БОЛЕЗНИ
(отгреч. endemos — местный) , массовые болезни ж-ных, развивающиеся в определ. биохим. провинциях. На терр. этих провинций в кормах и воде постоянны недостаток или избыток одного или неск. хим. элементов и их соединений, что обусловлено аномальным содержанием их в почве. Наиб. изучены Э. б., возникающие в результате недостатка или избытка кобальта, марганца, меди, иода, кальция, магния, железа, стронция, бария, бора, никеля, серы, цинка и др. У ж-ных чаще встречаются гипокобальтоз (характерно истощение ж-ного в пастбищный период), энзоотич. атаксия ягнят, эндемич. зоб, эндемич. остеодистрофия (у ж-ных часто наблюдают отрыв круглых связок), беломышечная болезнь, флюороз. Лечение и профилактика: пополнение кормовых рационов недостающими минер. в-вами; введение биол. антагонистов по отношению к избыточно содержащимся элементам.

Подобные эндемии известны – при большом содержании в почве стронция (хондродистрофия), бора (борный энтерит), фтора (флюороз), кальция (ломкость костей), кобальта (гипо- и авитаминоз, витамина В12). При недостатке йода развивается эндемический зоб и т.д.

Эндемический зоб – компенсаторное увеличение щитовидной железы. Это ярко проявляется в местах (провинциях) с одновременным недостатком йода и кобальта.

В провинциях бедных фтором распространен эндемический кариес зубов и у животных и у человека (пример – содержание фтора в питьевой воде в крупных городах Беларуси) от 0,1 до 0,3 мг/л.

Всего на территории стран СНГ насчитывается более 30 естественных биогеохимических провинций.

17. Методы осветления питьевой воды.

Осветление и частичное обесцвечивание воды могут быть достигнуты при длительном отстаивании. Отстаивание основано на том, что в медленно текущей воде взвешенные вещества, имеющие больший удельный вес, чем вода, выпадают и осаждаются на дно. Однако естественное отстаивание протекает медленно, а эффективность обесцвечивания при нем невелика. Поэтому в настоящее время для осветления и особенно обесцвечивания часто применяют предварительную обработку воды химическими реагентами, ускоряющими осаждение взвешенных частиц (коагулирование).

Процесс осветления и обесцвечивания завершают фильтрованием воды через слой зернистого материала (песок, антрацит) или ткань (полевые фильтры). Для очистки воды может применяться отстаивание в сочетании с так называемой медленной фильтрацией.

Отстаивание воды производят в отстойниках, представляющих собой резервуары глубиной в несколько метров, через которые непрерывно движется вода с очень малой скоростью. Вода находится в отстойнике в течение 4—8 часов. За это время осаждаются наиболее крупные частицы.

После отстаивания воду для окончательного осветления пропускают через медленно действующий фильтр. Он представляет собой железобетонный резервуар, на дне которого устраивается дренаж из железобетонных плиток или дренажных труб с отверстиями, отводящими профильтрованную воду (рис. 30). Поверх дренажа загружается поддерживающий слой щебня и гразия, не дающий вышележащему песку просыпаться в отверстия дренажа. На гравий загружается фильтрующий слой песка толщиной 1 м.

Через фильтр медленно, со скоростью 0,1—0,3 м в час, пропускают очищаемую воду.

Медленно действующие фильтры хорошо очищают воду только после «созревания», заключающегося в том, что вследствие задержки находящихся в воде взвешенных примесей в верхнем слое песка размер пор настолько уменьшается, что здесь начинают задерживаться даже самые мелкие частицы яйца гельминтов и до 99% бактерий. Каждые 30—60 дней лопатами удаляют 2—3 см верхнего, наиболее загрязненного слоя песка.

Медленно действующие фильтры находят применение на небольших водопроводах, на, пример для водоснабжения сел и совхозов, где надежность действия при сравнительно простой эксплуатации имеет решающее значение.

Коагулирование обычно применяется в сочетании с отстаиванием и скорой фильтр а цией воды. Для коагулирования к воде добавляют химические реагенты, называемые коагулянтами.

Наиболее часто применяемым коагулянтом является сернокислый алюминий, который при прибавлении его к воде переходит в гидроокись алюминия, выпадающую в виде быстро оседающих хлопьев. Эти хлопья увлекают за собой мельчайшую взвесь, микробы и коллоидные гумино вые вещества, придающие воде цвет. Количество коагулянта, необходимое для обработки воды, подбирают опытным путем; оно составляет от 20 до 200 мг на 1 л воды.

Применение коагулирования позволяет обесцветить воду, сократить срок отстаивания воды до 2 часов и прим&нить быстродействующие фильтры. Скорость фильтрации воды через песок на быстродействующих фильтрах составляет 4-12 м в час, т. е. в 50—100 раз больше, чем «а медленно действующих; соответственно с этим уменьшается площадь и стоимость сооружений. Через 10—15 минут после начала фильтрации в верхнем слое песка образуется фильтрующая пленка из хлопьев коагулянта. Это улучшает процесс задержки взвешенных примесей и микробов. Через 8—12 часов фильтр промывают в течение 5—10 минут током чистой воды, направленным снизу вверх. На фильтрах в зависимости от периода работы задерживается от 80 до 99% бактерий. Быстродействующие фильтры применяют на крупных водоочистных станциях. Для полного исключения опасности поступления воды с патогенными бактериями воду на водопроводах после фильтрации подвергают обеззараживанию.

18. Хлорирование воды нормальными дозами, хлоропотребность воды, расчет дозы хлора, контроль за эффективностью хлорирования.

Для хлорирования применяют газообразный хлор (в баллонах), хлорную известь, гипохлоршп кальция, хлорамин.

Бактерицидный эффект хлора и его соединений состоит из двух компонентов:

1. Бактерицидное действие самого хлора

•2.      Бактерицидное действие атомарного кислорода (О), который образу­ется при распаде хлорноватистой кислоты, образующейся при взаи­модействии хлора с кодой.

Эффективность хлорирования зависит от

1) Активности применяемых веществ. Наибольшей активностью обла­дает хлор. Слабее действует хлорная известь, причем ее эффектив­ность зависит от содержания в ней активного хлора (25-35 %). Дру­гие соединения слабее хлорной извести.

2) Качества (чистоты) хлорируемой воды. Взвешенные в воде частицы препятствуют бактерицидному действию хлора, хлор тратится на окисление органических веществ воды. Чем чище вода, тем ниже хлорпоглощаемость воды (см. ниже), тем эффективнее хлорирование.

3) Дозы хлора и времени его действия. От дозы хлора (и величины хлорпоглощаемости) зависит количество остаточного хлора (см. ни­же), который и обеспечивает бактерицидное действие.

4) Свойств самих микробов и др.

Методика.

На водопроводной станции воду обычно хлорируют, используя газооб­разный хлор. Баллоны присоединяют к хлораторам, которые подают хлор в воду. На водопроводной станции обычно осуществляется нормальное по­стхлорирование (см. ниже "Виды хлорирования")

Недостатки хлорирования как метода обеззараживания воды:

1) Хлор изменяет органолептические свойства воды (запах, вкус, прозрачность)

2) Имеются хлоррезистентные микробы (например, спорообразую-щие)

Виды хлорирования.

Существует несколько видов (способов) хлорирования.

I. По месту ввода хлора в схеме обработки воды.

1) Постхлорирование - хлорирование производится после всех этапов обработки (очистки) >юды. Наиболее распространено. • 2) Двойное хлорирование - хлорирование производится как до, так и по­сле очистки воды.

II. По величине дозы хлора.

1) Нормальное хлорирование (хлорирование нормальными дозами хло­ра). Доза хлора при нормальном хлорировании рассчитывается исходя из хлорпотребности воды. Хлорпотребность (или хлорпоглощае-мость) воды - это то количество хлора, которое идет на окисление органических веществ, содержащихся в воде (при внесении хлора в воду через некоторое время его количество уменьшается, так как оп­ределенное количество его, равное хлорпотребности, идет на окисле­ние органических веществ). При введении хлора в большем количестве чем хлорпотребность, он остается в воде. Хлор, который остается в воде называется остаточным. Обычно после хлорирования остаточ­ный хлор составляет 0.3-0.5 мг/л (при условии, что прошло не менее 30 минут с момента внесения хлора в воду). Таким образом, Доза хлора = Хлорпотребность воды + 0.3-0.5 мг/л (Остаточный хлор). Нормальное хлорирование применяется.чаще всего на водопро­водных станциях, так как вода до этого проходит тщательную очист­ку и нормальных доз хлора, обеспечивающих указанное количество остаточного хлора вполне достаточно (учитывая, что чем больше вели­чина остаточного хлора тем хуже органолептические свойства воды). Иногда нормальное хлорирование применяется и в полевых условиях.

2) Гиперхлорирование и суперхлорирование (хлорирование повышен­ными дозами хлора). Применяется обычно для хлорирования в поле­вых условиях грязной, подозрительной в эпидемическом отношении воды и отличается применением высоких доз хлора. При гиперхлори-провании используют дозы от 10 до 50 мг/л. Продолжительность хло­рирования - 15 минут летом, 25-30 минут зимой. Если в воде обнару­жены (или подозреваются) споры сибирской язвы, то применяют су­перхлорирование и дозы хлора повышают до 100 мг/л и более. При хлорировании в полевых условиях используют хлорную известь, двутреть основную соль гипохлорита кальция (ДТСГК), которая содержит 60 % активного хлора, нейтральный гипохлорит кальция (НГК) - 70 % активного хлора, а также индивидуальные средства - хлорсодержащие таблетки ("аквасепт", "спороцид", "аквацид" и др.). После использования повышенных доз хлора необходимо последующее дехлорирование воды, так как без этого она практически не пригодна для употребления но органолептическим свой­ствам. Дехлорирование производят с помощью гипосульфита, а также путем фильтрации через активированный уголь

19. Облучательные и светооблучательные установки для профилактики УФ- недостаточности. Расчет светооблучательных установок.

В настоящее время практически применяется три типа искусственных источников ультрафиолетового излучения.

1. Эритемные люминесцентные лампы ПЭ(ЭУВ) — источники ультрафиолетового излучения в областях А и В. Максимум излучения лампы — область В (313 нм). Применяются для профилактического и лечебного облучения людей.

Изготавливается лампа ЭУВ из специального стекла (увиолевого), хорошо пропускающего УФ-излучение. Внутри трубка лампы покрыта люминофором (фосфат кальция, активированный таллием) и заполнена дозированным количеством ртути с инертным газом при давлении в несколько гектопаскалей. Лампы ЭУВ выпускаются мощностью 15 Вт (ЭУВ-15), 30 Вт (ЭУВ-30; ЛЭ-30; ЛЭР-30), 40 Вт (ЛЭР-40). Средний срок службы 1000 ч. Эритемные лампы включаются в электросеть при наличии специальных приборов — дросселя и стартера.

Для ламп ЭУВ разработана специальная арматура двух видов:

а) комбинированные светильники ШЭЛ-1, ШЭЛ-2, ШЭП-1, в которых, кроме ламп ЭУВ, включают и осветительные люминесцентные лампы (включение эритемных и осветительных ламп может производиться раздельно);

б) облучатели ОЭ-1-15 и ОЭО-2-30, которые предназначены только для ламп ЭУВ.

2. Прямые ртутно-кварцевые лампы ПРК (ДРТ—дуговые ртутно-кварцевые лампы) являются мощными источниками излучения в ультрафиолетовых областях А, В, С и видимой части спектра. Максимум излучения ламп ПРК находится в ультрафиолетовых частях спектра области В (25% всего излучения) и С (15% излучения). В связи с этим лампы ПРК применяют как для облучения людей профилактическими и лечебными дозами, так и для обеззараживания объектов внешней среды (воздуха, воды и т, д.).

Применять лампы ПРК для облучения людей следует с особой осторожностью, так как под влиянием короткой части спектра (области С) могут возникнуть ожоги слизистой оболочки глаз (фотоофтальмия), произойти изменения в составе крови и т. п. Время облучения и расстояние до лампы строго дозируют, глаза облучаемых лиц и персонала защищают темными очками.

Лампы ПРК изготовляют из кварцевого стекла и заполняют дозированным количеством ртути и аргона. По мощности они делятся на несколько типов: ПРК-2 (375 Вт), ПРК-4 (220 Вт), ПРК-7 (1000 Вт). Средний срок службы их 800 ч.

Для ламп ПРК разработаны два типа облучателей: а) облучатель ртутно-кварцевый маячного типа большой (для ламп ПРК-7), стойка которого имеет постоянную высоту (ОМУ); б) облучатель ртутно-кварцевый маячного типа малый (для ламп ПРК-2 и ПРК-4), стойка которого может быть различной высоты.

3. Бактерицидные лампы из увиолевого стекла БУВ(ДБ) являются источниками ультрафиолетового излучения в области С. Максимум излучения ламп БУВ 254 нм. Лампы применяют только для обеззараживаний объектов внешней среды: воздуха, воды, различных предметов (посуда, игрушки). Облучение людей прямыми лучами от этих ламп не допускается. В случае облучения людей могут возникнуть такие же неблагоприятные явления, как при переоблучении лампами ПРК (фотоофтальмия и др.).

Лампы БУВ изготовляют из увиолевого стекла и заполняют аргоном с дозированным количеством ртути при низком давлении. Производят лампы мощностью 15 Вт (БУВ-15), 30 Вт (БУВ-30, ДБ-30-1), 60 Вт (БУВ-60, ДБ-60), 30 Вт с повышенной плотностью тока (БУВ-30-И).

Для этих ламп разработана специальная экранирующая аппаратура, направляющая лучи так, чтобы они не могли попасть в глаза стоящему человеку. Для установки этих ламп существует настенная, потолочная или передвижная арматура (облучатели ОБН-160, ОБП-300, ОБП-450), а также комбинированные облучатели, предназначенные для осветительных люминесцентных ламп и ламп типа БУВ.

Существует два вида облучательных установок: установки длительного действия и кратковременного действия. В первых установках обычное искусственное освещение внутри помещения насыщается ультрафиолетовыми лучами с помощью источников УФ-излучения. Находящиеся в помещении люди облучаются в течение всего времени пребывания в нем УФ-потоком небольшой интенсивности (светооблучательные установки). Установки кратковременного действия оборудуют в специальных помещениях, называемых фотариями. Дозирование УФ-облучения производится в биодозах.

Для определения интенсивности ультрафиолетовой радиации в относительных единицах (1 мг разложившейся щавелевой кислоты на 1 см2) расчет производят по формуле:

Y – количество разложившейся щавелевой кислоты, мг/см2´ч;

М1 – количество 0,1 н. раствора KMnO4, пошедшего на титрование «необлученного» реактива Б, мл;

М2 – количество 0,1 н. раствора KMnO4, пошедшего на титрование «облученного» реактива Б, мл;

6,3 – коэффициент для пересчета количества разложившейся щавелевой кислоты с 20 мл реактива Б, взятых для титрования, на весь объем, подвергшийся облучению (70 мл);

S – площадь облучаемой поверхности чашки Петри (S = pR2), см2;

20. Нормирование качества питьевой воды (нормативные документы, нормируемые показатели).

Нормативы качества воды приведены в Санитарных правилах и нормах охраны поверхностных вод от загрязнения (СанПиН 4630-88) и Правилах охраны поверхностных вод (1991 г.). Нормы даны для воды хозяйственно-питьевого, коммунально-бытового и рыбохозяйственного водопользования. В них использовано 5 групп показателей:

- органолептические

- общесанитарные

- санитарно-токсикологические

- токсикологические и рыбохозяйственные (применяются только в местах рыбохозяйственного водопользования)

С помощью органолептических показателей оценивают вещества, изменяющие цвет, запах и вкус воды, а общесанитарных показателей - вещества и свойства воды, влияющие на скорость протекания процессов самоочищения. Санитарно-токсикологические показатели характеризуют содержание ядовитых для человека 3В, а токсикологические - то же, но только для рыб.

Гигиенический ПДК вещества в воде - это максимальная концентрация индивидуального ЗВ в воде, выше которой вода не пригодна для установленного вида водопользования. При концентрациях равной или меньше ПДК вода остается такой же безвредной для всего живого, как и вода, в которой отсутствует данное вещество. Гигиенические ПДК веществ в воде базируется на подпороговых концентрациях 3В, при которых не наблюдается сколько-нибудь заметного изменения функционального состояния организма человека, определяемого современными методами.

При отсутствии ПДК для 3В, содержащихся в воде, на стадии предупредительного контроле устанавливаются Госкосанэпидемнадзором РФ ориентировочные допустимые уровни (ОДУ) содержания этих веществ в воде (пока для 116 веществ), разработанные на основе расчетных и экспресс-экспериментальных методов прогноза токсичности.

Оценка качества питьевой воды для каждого 3В или свойства ведется последовательно по всем группам показателей, т.е. вначале идет органолептическая оценка, потом проверяются общесанитарные характеристики и в конце - санитарно-токсикологические. Для каждого 3В определяются три разных ПДК, наименьшее из которых называется лимитирующим показателем вредности - ЛПВ. Например, для фенола ЛПВ будет органолептическим, так как фенол делает воду непригодной для питья из-за изменения ее вкуса и запаха при таком содержании, которое не представляет опасности для здоровья человека. Для цинка ЛПВ - общесанитарный, а для свинца, мышьяка и ртути - санитарно-токсикологический.

ЛПВ и ПДК некоторых веществ для различных видов водопользования

При наличии в воде нескольких ЗВ с одинаковыми ЛПВ их совместное действие учитывается по правилу

 

(5.4),

где – концентрация вещества в воде, мг/л.

Санитарные требования к питьевой воде следующие: выраженность запахов и привкусов не должна превышать 2 баллов; на воде не должно быть каких-либо пленок и пятен масла; ее температура не должна превышать среднемесячную температура самого жаркого месяца за последние 10 лет более чем на 3 С; допустимый диапазон pН 6,5...7,5.

Безопасность питьевой воды в эпидемическом отношении определяется ее соответствием нормативам по микробиологическим показателям. Микробиологический состав питьевой воды является основным показателем ее качества и пригодности потребления. При этом учитываются как бактериальное так и вирусное загрязнение.

Эпидемиологическая безопасность питьевой воды в СанПиН оценивается по нескольким показателям. Большая роль среди них отводится термотолератнымколиформам как истинным показателям фекального загрязнения и общим колиформам.

Микробиологические показатели питьевой воды

С позиции санитарной микробиологии оценка качества воды проводится с целью определения ее санитарно-эпидемиологической опасности или безопасности. Для здоровья человека. Вода играет важную роль в передаче возбудителей многих инфекций, главным образом кишечных.

21. Оценка питьевой воды по бактериологическим показателям.

Основная задача санитарно-бактериологических исследований воды заключается в получении гигиенической оценки ее качества в отношении инфекционной опасности. Бактериологические исследования помогают выявить и идентифицировать отдельные патогенные (болезнетворные) микроорганизмы (бактерии, вирусы, простейшие).

Бактериологические показатели:

1. Общее микробное число (ОМЧ) – подсчет общего числа образующих колонии бактерий в 1 мл воды. Полученное значение называют общим микробным числом. Высокое микробное число свидетельствует об общей бактериологической загрязненности воды и высокой вероятности наличия патогенных организмов. По СанПиН норма не более 50 в 1 мл.

2. Общие коли-формные бактерии. По СанПин не должны обнаруживаться в системах водоснабжения с подготовленной водой. Допускается случайное попадание коли-формных организмов в распределительной системе, но не более чем в 5% проб, отобранных в течение любого 12-месячного периода. Присутствие же коли-формных организмов в воде свидетельствует о ее недостаточной очистке, вторичном загрязнении или о наличии в воде избыточного количества питательных веществ.

3. Термотолерантные коли-формные бактерии – группа коли-формных организмов, способных ферментировать лактозу при 44-45 градусах. В норме отсутствуют.

4. Коли-индекс - число бактерий группы кишечных палочек в 1 л воды. В норме отсутствуют.

5. Коли-фаги – это разновидность бактериофагов, живущих в коли-формных бактериях. В норме отсутствуют.

6. Споры сульфидредуцирующихклостридий – определяют число спор в 20 мл. В норме отсутствуют. Споры клостридий способны существовать в воде значительно дольше, чем колиформные организмы, и они более устойчивы к обеззараживанию. Их присутствие в прошедшей дезинфекцию воде может указывать на ее недостаточную очистку и на то, что устойчивые к обеззараживанию патогенные микроорганизмы могли не погибнуть.

7. Цисты лямблий – определяют число цист в 50 л. В норме отсутствуют. Они устойчивы к кислотам, щелочам, веществам, содержащим активный хлор, и полностью инактивируются лишь при кипячении в течение не менее 20 мин.

22. Значение влажности воздуха, его влияние на процессы терморегуляции. Методы измерения влажности воздуха.

Абсолютная влажность - упругость (мм рт. ст.) или количество водяных паров (г), находящихся в данное время в 1 м3 воздуха.

Максимальная влажность - упругость водяных паров (мм рт. ст.) при полном насыщении воздуха влагой при данной температуре или количество водяных паров (г), необходимое для полного насыщения 1 м3 при той же температуре.

Относительная влажность - отношение абсолютной влажности к максимальной, выраженное в процентах, иными словами - процент насыщения воздуха водяными парами в момент наблюдения.

т степени насыщения воздуха водяными парами в значительной степени зависят потери тепла. Одна и та же температура воздуха ощущается по-разному в зависимости от степени влажности, оказывающей влияние на процесс испарения с поверхности тела.

Наибольшее гигиеническое значение имеет относительная влажность. Она дает представление о степени насыщенности воздуха водяными парами и указывает на его способность принять дополнительное количество водяных паров при испарении с поверхности кожи. Например, чем ниже относительная влажность воздуха, тем меньше воздух насыщен водяными парами.

Воздействие влажности воздуха на организм главным образом связано с тем, что она существенно влияет на процессы теплоотдачи. Повышенная влажность при высокой внешней температуре способствует перегреванию организма, так как при этом значительно ухудшаются условия теплоотдачи. При температуре воздуха свыше + 25-30 °С основным путем отдачи тепла организмом является испарение пота. Однако организм отдает тепло, только когда пот испаряется с поверхности кожи (при испарении 1 г пота организм теряет 0,6 ккал). При повышенной влажности воздуха испарение пота в значительной мере замедляется, теплоотдача резко снижается. Особенно отрицательно это сказывается при мышечной деятельности, когда организм усиленно вырабатывает тепло, поэтому при выполнении физических упражнений в условиях высокой влажности и температуры воздуха всегда имеется опасность возникновения перегревания организма.

Низкая влажность воздуха при высокой внешней температуре способствует хорошей теплоотдаче и позволяет легче переносить жару (климат Средней Азии, где сухой воздух обеспечивает быстрое испарение пота).

Повышенная влажность воздуха при низкой внешней температуре способствует охлаждению организма, так как при этом усиливается теплоотдача. Это связано с рядом причин. Прежде всего увеличивается потеря тепла, так как повышается теплопроводность воздуха, ибо водяные пары имеют более высокую теплопроводность, чем воздух. Вместе с тем повышается теплопроводность тканей одежды (воздух, находящийся в парах тканей, становится более теплопроводным), и поэтому тепло быстро покидает пространство под одеждой. Длительное пребывание в условиях высокой влажности воздуха и при температуре воздуха ниже - 10-15 °С может привести к переохлаждению организма и вызвать простудные и другие заболевания (ревматизм, туберкулез легких и др.).

Определяется влажность воздуха психрометром и гидрометром.

23. Бактериальное загрязнение воздуха в помещениях. Методы бактериологического исследования воздуха. Санация воздуха в помещениях.

Основная масса микроорганизмов попадает в атмосферный воздух с почвенной пылью, которая, сорбируя микроорганизмы, оказывается обсемененной ими. Микроорганизмы и пыль, находясь в воздухе во взвешенном состоянии, образуют систему бактериальных аэрозолей. Образование бактериальных аэрозолей происходит при физиологических актах — кашле, чиханье, громком разговоре.

 

Развитие исследований в области аэробиологии показало, что в воздухе закрытых помещений наряду с большим количеством сапрофитных микроорганизмов могут находиться патогенные бактерии и вирусы; менингококки, патогенные стафилококки, возбудители дифтерии, туберкулеза, коклюша, вирусы гриппа, оспы, аденовирусы и др. Санитарно-бактериологические исследования воздуха проводят в плановом порядке в яслях и детских садах, больницах, операционных, аптеках, школах, кинотеатрах. Исследуют также атмосферный воздух.


При санитарно-бактериологическом исследовании воздуха проводят:

1) определение общей бактериальной обсемененности воздуха (общее число бактерий в 1 м3);

2) выявление санитарно-показательных микроорганизмов (наличие S. Aureus)

3) по эпидемическим показаниям выделение вирусов и патогенных бактерий из воздуха закрытых помещений (оценка качества санации).


Методы отбора проб воздуха для бактериологического исследованияподразделяют на:

1) аспирационные, основанные на активном просасывании воздуха с помощью различных приборов.
Наиболее широкое применение в последние годы получил аппарат Кротова, в который воздух засасывается сквозь узкую щель крышки прибора и ударяется о поверхность плотной питательной среды в чашке Петри, которая медленно вращается на подвижном столике. Поверхность питательной среды равномерно обсеменяется микроорганизмами.

2) седиментационные, основанные на принципе механического оседания микробов. Седиментационный метод наиболее старый (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательными средами оставляют открытыми в местах отбора проб в течение 5—10 мин. По окончании экспозиции чашки закрывают и помещаю в термостат при 37°С на 24 ч, а затем при комнатной температуре выдерживает еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Несмотря на неточность, данный метод пригоден для сравнительной оценки качества санации (выявление вирусов и патогенных бактерий).

 

Пробы воздуха берут на уровне сидящего или стоящего человека, выделяя одну точку взятия проб на каждые 20 м2 площади.

.

С целью исследования воздуха на наличие стафилококка берут пробы воздуха на две чашки с желточно-солевым агаром или молочно-желточно-солевым агаром, пропуская 250 л воздуха.ОбнаружениеStaph, aureus в отделениях больниц является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как предвестник возможного появления госпитальной инфекции.


Санация воздуха в помещении проводится с помощью коротковолнового (200-280 нм) УФ-излучения, обладающего бактерицидным действием. Используются прямые и дуговые ртутно-кварцевые лампы (ПРК и ДРК), а также бактерицидные лампы из увиолевого стекла (БУВ).Санация проводится:
а) В присутствии людей- наиболее эффективно, т.к. люди- главный источник загрязнения. Облучают верхнюю зону помещений, экранированную снизу лампами БУВ. На 1 м3 помещения должно приходиться 0,75-1 Вт мощности. Время облучения не должно превышать 8ч/сут.
б) В отсутствии людей- в бактериологических лабораториях, операционных, перевязочных и др. помещениях после влажной уборки. Открытые лампы БУВ равномерно распределяют по всему помещению и одну над входом. На 1 м3 помещения должно приходиться 1,5 Вт мощности. Минимальное время облучения 15-20 мин.

Лампы ПРК используются для санации как в присутствии (мощность 2-3 Вт/м3), так и в отсутствии людей(мощность 5-10 Вт/м3)

 

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 243.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...