Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Формирование электронных пучков в электронных пушках. Влияние пространственного заряда на формирование пучков. Понятие о компрессии и первеансе.




Основным средством вакуумной электроники СВЧ, служащим для преобразования энергии источника постоянного тока в энергию электромагнитного поля СВЧ колебаний, являются электронные пучки – протяженные электронные потоки, ограниченные в поперечном сечении.

Электронные пучки создаются с помощью специальных электронно-оптических устройств – так называемых электронных пушек, выбрасывающих ускоренные электроны, траектории которых приблизительно параллельны оси пушки.

Рассмотрим такие основные характеристики электронных пучков, как мощность, первеанс и интенсивность электронного потока, а также взаимозависимость между конфигурацией электронного потока и ЗС прибора.

Мощность пучка (произведение переносимого им тока Iна напряжениеU, которым были ускорены электроны) определяет мощность прибора СВЧ:P=U×I.

Важной характеристикой электронного потока является первеанс, определяемый как P . Первеанс является мерой интенсивности потока. В приборах СВЧ, как правило, применяются интенсивные электронные потоки, в которых сила взаимного расталкивания электронов существенно влияет на движение электронов, так что их действием пренебрегать нельзя. Интенсивными, как показывают расчеты, следует считать потоки, у которых первеанс принимает значения, большие 10-8–10-7A/В3/2. Ввиду малости численного значения первеанса часто пользуются более удобной величиной – микропервеансомP m, определяемым равенством

P = P m×10-6. (1.34)

Мощность электронного потока через первеанс можно выразить формулой

P=U×I=P×U5/2.

Как видно из формулы, при неизменном первеансе мощность очень быстро растет по мере роста U(так, при увеличении напряжения на порядок мощность возрастает более чем в 300 раз).

Однако во всех приборах мощность выгоднее увеличивать не столько за счет роста напряжения, сколько за счет роста тока пучка, так как чем больше рабочее напряжение, тем сложнее конструкция изоляторов в приборе и тем сложнее источники питания и, как следствие, громоздкость и сложность высоковольтного оборудования. Снижение рабочего напряжения при заданной мощности пучка не только уменьшает сложность аппаратуры, но и приводит к уменьшению габаритов прибора за счет сокращения длины активных участков электродинамической системы (ЭДС). В ЛБВ с возрастанием первеанса может увеличиваться коэффициент усиления и КПД.

Для того чтобы сформированный пучок можно было успешно использовать в электронных приборах СВЧ, необходимо, сохраняя хорошую форму, провести его через все пространство взаимодействия с высокочастотными полями. Поскольку в сильноточных электронных пучках действуют значительные кулоновские силы взаимного отталкивания зарядов, приводящие к «разбуханию» пучков, эта задача оказывается зачастую не менее сложной, чем формирование самого пучка.

Для борьбы с «разбуханием» пучков чаще всего применяют постоянное магнитное поле, параллельное оси пучка. Из-за относительно большой длины приборов достаточно сильное магнитное поле требуется создать на большом участке. Поэтому масса магнитной фокусирующей системы (МФС) получается весьма большой. Меньшие затраты на мощность и массу магнитных систем реализуются при использовании периодической магнитной фокусировки, при которой электронный пучок пропускается вдоль знакопеременного магнитного поля. Подобную систему собирают из отдельных коротких магнитных колец, разделенных втулками из материала, обладающего высокой магнитной проницаемостью. Аналогичного результата добиваются и с помощью периодической электростатической фокусировки, которая осуществляется рядом периодически расположенных электростатических линз. Такая система обладает еще меньшей массой и потребляемой мощностью.

Помимо магнитного удержания существует еще один способ борьбы с «разбуханием» пучков, заключающийся в том, что в объем электронного пучка вводится некоторое количество положительно заряженных ионов, которые своим пространственным зарядом компенсируют отрицательный пространственный заряд электронов. В простейшем случае ионы можно создать, оставив в объеме прибора некоторое количество «неоткачанного» газа. Электроны пучка на своем пути будут ионизировать молекулы этого газа. Образовавшиеся в результате ионизации вторичные электроны выбрасываются за пределы пучка кулоновскими силами, тогда как положительные ионы будут удерживаться этими силами в его объеме. В результате даже при очень малых давлениях остаточного газа может образоваться такое количество положительных ионов, что их концентрация сравнивается с концентрацией электронов в пучке. На этом накопление ионов прекратится и установится стационарное состояние, при котором в объеме пучка образуется квазинейтральная среда, напоминающая плазму. Пространственный заряд электронов оказывается скомпенсированным, и пучок не «разбухает». Описанное явление, называемое ионной фокусировкой, наблюдается при давлениях остаточных газов, превышающих 10-6мм рт. ст.

В зависимости от формы поперечного сечения электронные пучки разделяются на три основных типа: ленточный, аксиально-симметричный и трубчатый.

Системой формирования электронного потока называется совокупность электрических и магнитных полей, а также образующих их электродов и магнитных цепей, необходимых для создания электронных потоков нужной конфигурации. Она содержит четыре области:

1) область электронной пушки, в которой имеется источник электронов – катод и анод, между которыми приложено ускоряющее напряжение U0;

2) переходную область – область между пушкой и областью регулярной части МФС, в которой сила электростатического поля, созданного электродами, резко уменьшается, продолжается действие сил пространственного заряда, которые в конце области становятся главной расфокусирующей силой, стремящейся расширить поток, начинают действовать фокусирующие силы магнитного поля, направленные к оси пучка; в переходной области заканчивается формирование электронного потока и происходит «согласование» параметров потока, созданного пушкой, с параметрами регулярной части системы формирования;

3) область регулярной части системы формирования, в которой расположена ЭДС прибора и происходит взаимодействие потока с СВЧ полем;

4) область коллектора, в которой электроны «отработанного» потока воспринимаемые специальной металлической поверхностью, заканчивают свое движение в системе; чем больше КПД прибора, тем меньше мощность, рассеивающаяся на коллекторе; форма поверхности коллектора выбирается таким образом, чтобы тепловые нагрузки на эту поверхность не превышали допустимой удельной величины.

Положительный или отрицательный пространственный заряд, распределенный в потоке частиц вследствие взаимодействия их собственных зарядов, приводит к возникновению сил пространственного заряда в самом пучке частиц. Эти силы в свою очередь приводят к возникновению трех основных явлений:

1) расширению пучка;

2)понижению электростатического потенциала в пространстве, занимаемом пучком («провисанию потенциала»);

3)ограничению тока пучка и существованию его предельного значения.










Последнее изменение этой страницы: 2018-04-12; просмотров: 832.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...