Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Устройство и принцип действия электронной одноточечной системы впрыска (моно системы)




Кроме распределённого впрыска в бензиновых двигателях применяется также центральный впрыск (одноточечные моно системы). Моно система впрыска представляет собой электронно-управляемую систему впрыска, в которой топливо впрыскивается во впускной трубопровод электромагнитной форсункой, расположенной перед дроссельной заслонкой. Распределение топливовоздушной смеси по цилиндрам происходит, как и в случае применения карбюратора – через впускной трубопровод. Конструкция системы центрального впрыска схематично представлена на рис. 4.36.

Рис. 4.36. Схема системы Моно-Джетроник:

1 – измеритель расхода воздуха; 2 – форсунка; 3 – блок управления; 4 – клапан добавочного воздуха; 5 – датчик положения дроссельной заслонки; 6 – регулятор давления топлива в системе; 7 – топливный фильтр; 8 – топливный насос; 9 – датчик температуры охлаждающей жидкости

 

Система подачи топлива из бака здесь аналогична применяемой на системах распределенного впрыска. Топливо из бака  засасывается насосом 8 погружного или выносного типа и под давлением подается к фильтру тонкой очистки 7, а затем к т.н. моноблоку дроссельной заслонки, где расположена электромагнитная форсунка 2, распыливающая топливо в зону над дроссельной заслонкой. Количество подаваемого топлива во впускной трубопровод зависит от величины поднятии иглы форсунки, которая в свою очередь определяется блоком управления по напряжению, подаваемому в обмотку форсунки. Если двигатель V-образный, в моноблоке располагаются две форсунки, каждая из которых распыляет топливо над своей дроссельной заслонкой (эта конструкция применяется, в основном, на автомобилях американского производства).

При такой схеме используется впускной коллектор, аналогичный карбюраторным системам. Этим системам характерны основные недостатки систем центрального впрыска: неравномерное распределение топливовоздушной смеси по цилиндрам и образование топливной пленки на стенках впускных трубопроводов. Тем не менее, благодаря совершенным алгоритмам управления эти недостатки удается в значительной степени скомпенсировать.

Несомненным преимуществом данных систем является их относительная простота и меньшая, по сравнению с многоточечными системами, стоимость. В условиях эксплуатации такие системы более надежны – например, форсунки в гораздо меньшей степени подвержены загрязнениям и закоксовыванию, а низкое давление в системе позволяет во многих случаях применять бензонасосы турбинного типа, которые имеют больший ресурс.

Основная часть системы – моноблок дроссельной заслонки (заслонок), общая схема которого представлена на рис. 4.37. 

 

Рис. 4.37. Узел центральной форсунки:

1 – регулятор давления топлива; 2 – обмотка; 3 – датчик температуры всасываемого топлива; 4 – электромагнитная форсунка; 5 – дроссельная заслонка; 6 – корпус дроссельной заслонки; 7 – клапан форсунки; 8 – распыливающие отверстия; 9 – корпус форсунки и регулятора

 

В верхней части моноблока установлена электромагнитная форсунка 4. Топливо к форсунке подводится по специальному каналу, выполненному в корпусе моноблока. Для поддержания необходимого давления в системах центрального впрыска используется встроенный регулятор давления 1, перепускающий излишки топлива по трубопроводу обратно в бак. Как правило, в системах центрального впрыска поддерживается давление порядка 0,8…1,2 кгс/см2. Принцип работы и устройство регулятора аналогичны регуляторам, применяемым в электронных системах распределенного впрыска, однако, в отличие от этих систем, полость над диафрагмой соединяется не с задроссельным пространством, а с атмосферой (точнее, с полостью за воздушным фильтром). Это объясняется тем, что форсунка расположена над дроссельной заслонкой, т.е. в зоне практически постоянного давления, поэтому перепад давления на форсунке не меняется. В обесточенном состоянии клапан 7 прижат пружиной к седлу и перекрывает доступ топлива к отверстиям распылителя.

Когда от блока управления на катушку поступает импульс, магнитное поле, образующееся внутри катушки, поднимает якорь вверх, уменьшая давление пружины на клапан 7. Топливо, находящееся внутри корпуса форсунки, поднимает клапан и под давлением, поддерживаемым регулятором 1, распыливается в корпус дроссельной заслонки через отверстия 8. Обычно форсунка имеет шесть отверстий, ориентированных в разные стороны. Мелкое распыливание топлива обеспечивается за счет завихрения потока топлива в отверстиях распылителя. Угол впрыска выбирается таким, чтобы топливо направлялось в щель между дроссельной заслонкой и корпусом дроссельной заслонки.


4.2.3 Устройство и принцип действия электронной системы впрыска Мотроник

Производительность современных микропроцессоров позволяет осущест­влять управление функциями впрыска топлива и зажигания посредством еди­ного электронного блока управления, благодаря этому снижается стоимость аппара­туры и, кроме того, используется общий источник питания. Реализовать эту рациональную идею стало возможно, т.к. многие из входных сигналов при­годны для регулирования как впрыска, так и зажигания. Использование еди­ного электронного устройства повышает надежность системы управления двигателем и позволяет уменьшить затраты на сборку. На практике это озна­чает отказ от механического и пневматического регулирования опережения зажигания. Вместо него используется бесконтактная, полностью электронная, управляемая микропроцессором система зажигания, которая функционирует на основе информации, поступающей от индукционного датчика частоты вращения и углового положения коленчатого вала. Микропроцессор элек­тронного блока управления преобразует поступающую информацию в так на­зываемые параметрические поверхности (трехмерные графические характери­стики), которые учитывают действия водителя и нагрузку на двигатель.

Для реализации возможно большего числа функций управления требу­ется разнообразная входная информация. Одна из разновидностей электронной системы управле­ния, представлена на рис. 4.38.

 

Рис. 4.38. Схема системы Мотроник с встроенной системой диагностики: 1 – адсорбер; 2 – клапан впуска воздуха; 3 – клапан регенерации продувки; 4 – регулятор давления топлива; 5 – форсунка; 6 – регулятор давления; 7 – катуш­ка зажигания; 8 – датчик фазы; 9 – вспомогательный воздушный насос для подачи дополнительных порций воздуха; 10 – вспомогательный воздушный клапан; 11 – расходомер воздуха; 12 – блок управления; 13 – датчик положения дроссель­ной заслонки; 14 – регулятор холостого хода; 15 – датчик температуры воздуха; 16 – клапан системы рециркуляции отработавших газов; 17 – топливный фильтр; 18 – датчик детонации; 19 – датчик частоты вращения коленчатого вала; 20 – дат­чик температуры охлаждающей жидкости; 21 – лямбда-зонд (кислородный дат­чик); 22 – аккумуляторная батарея; 23 – диагностический разъем; 24 – диагности­ческая лампочка; 25 – датчик дифференциального давления; 26 – электрический топливный насос в топливном баке

 

В систему впрыска Мотроник могут поступать следующие данные:

· включено или выключено зажигание;

· положение распределительного вала;

· частота вращения коленчатого вала;

· скорость движения автомобиля;

· диапазон изменения передаточного отношения (в случае наличия ав­томатической трансмиссии);

· номер включенной передачи;

· информация о включении кондиционера и т. п.;

· напряжение аккумуляторной батареи;

· температура воздуха на впуске;

· расход воздуха;

· угловое положение дроссельной заслонки;

· напряжение сигнала кислородного датчика;

· сигнал датчика детонации.

 

Входные каскады электронного блока управления осуществляют подго­товку поступивших от датчиков сигналов, характеризующих режимные па­раметры, микропроцессор обрабатывает эти данные, определяет рабочий режим двигателя и производит расчет параметров необходимых управляю­щих сигналов, которые передаются на выходные каскады усиления, а затем поступают к исполнительным устройствам. Исполнительные устройства воздействуют на характеристики систем питания и зажигания, обеспечивая точное дозирование топлива и опти­мальный момент зажигания.

Датчиками системы Мотроник являются датчики, аналогичные описанным для системы впрыска L-Джетроник. Однако, ввиду отсутствия прерывателя-распределителя, для определения частоты вращения коленчатого вала здесь применяется индукционный датчик (рис. 4.39). 

Рис. 4.39. Индуктивный датчик частоты вращения:

1 – постоянный магнит; 2 – корпус; 3 – кар­тер двигателя; 4 - магнитомягкий сердеч­ник; 5 – обмотка; 6 – воздушный зазор; 6 - зубчатое колесо с точкой отсчета; 7 - магнитное поле; 8 – задатчик угловых импульсов (зубчатый диск) с отметчиком - пропуском зубьев

 

Индуктивный датчик содержат стержневой постоянный магнит 1 с по­люсным сердечником из магнитомягкой стали и обмотку индуктивности 5 с дву­мя выводами.

Датчик устанавливается непосредственно напротив ферромагнитного зубчатого диска - задатчика угловых импульсов 8, от которого его отделяет небольшой воздуш­ный зазор (0,8…1,5 мм). Сердечник соединен также с постоянным магнитом 1, и магнитное поле проходит через сердечник и зубчатый диск – задатчик импульсов 8. Интенсивность магнитного потока, проходя­щего через обмотку, зависит от того, нахо­дится ли датчик напротив зуба на диске или напротив промежутка (пропуска зубьев). Поскольку магнитный поток концентрируется зубьями диска, что приводит к увеличению магнитного потока через обмотку, то при подходе пропуска зубьев он ослабевает. Следовательно, при вращении зубчатого диска возникают колебания магнитного по­тока, которые, в свою очередь, генерируют синусоидальные колебания напряжения в электромагнитной обмотке, пропорциональ­ные скорости изменения магнитного потока (рис. 4.40). Амплитуда колебаний переменного напряжения увеличивается строго пропор­ционально увеличению скорости вращения зубчатого диска. Для генерирования достаточного уровня сиг­нала требуется, по крайней мере, 30 об/мин.

Рис. 4.40. Переменное напряжение на выходе индукционного датчика:

1 – среднее напряжение; 2 – напряжение, соответствующее положению поршня в верхней мертвой точке

 

Количество зубьев на задатчике угловых импульсов зависит от конкретного приме­нения. Очень большой пропуск зубьев (8) устанавливается для определения поло­жения коленчатого вала и служит как отметка для синхронизации в ЭБУ. Ме­стоположение пропущенного зуба не обяза­тельно находится в ВМТ. Оно может быть сме­щено относительно ВМТ на любой угол, записанный в памяти блока управления.

Существует другой вариант задатчика угло­вых импульсов, который имеет один зуб на ци­линдр. Следовательно, в случае четырехцилиндрового двигателя задатчик имеет четыре зуба и, соответственно, генерируются четыре импульса на один оборот зубчатого диска.

В роли задатчика может выступать и маховик с равномерно установленными сталь­ными штифтами. Обычно они идут че­рез каждые 10°, т.е. устанавливается 36 штифтов.

Геометрия зубьев задатчика и магнитного сердечника должны соответствовать друг другу. Электронная схема в ЭБУ преобразу­ет синусоидальное напряжение, которое ха­рактеризуется четко меняющимися ампли­тудами, в среднеквадратичный сигнал с постоянной амплитудой для его оценки в микропроцессоре ЭБУ.

     Современные системы обычно имеют один индуктивный датчик, но в некоторых ранних версиях уста­навливались два датчика: датчик частоты вра­щения и датчик положения коленчатого вала.

    Амплитуда переменного напряжения дат­чика изменяется прямо пропорционально час­тоте вращения. Напряжение может изменяться от 5 В на холостом ходу до 100 В при частоте вращения 6000 об/мин. Поскольку для процес­сора предпочтителен цифровой сигнал (вклю­чено/выключено), переменное напряжение преобразуется в аналого-цифровом преобразо­вателе (АЦП).

Индуктивный датчик может также использоваться в каче­стве задающего генератора для выдачи базо­вого сигнала на зажигание и впрыск топлива.

В системах Мотроник предусмотрены также дополнительные функции системы впрыска. Необходимость в дополнительных функциях управления и регулиро­вания обусловлена жесткими требованиями, предъявляемыми к составу отработавших газов (ОГ), а также стремлением обеспечить наибольший комфорт и точное соответствие мощности двигателя условиям движе­ния. В настоящее время используются следующие дополнительные функции:

· регулирование частоты вращения коленчатого вала на холостом ходу;

· регулирование топливоподачи с обратной связью по составу смеси;

· управление углом опережения зажигания по детонации;

· рециркуляция ОГ для снижения выброса с отработавшими газами оксидов азота (NOX);

· управление турбокомпрессором;

· управление длиной впускных каналов;

· регулирование фаз газораспределения соответствующим воздействием на газораспределительный механизм;

· ограничение подачи топлива при достижении заданной частоты вра­щения коленчатого вала.

Если система управления и регулирования наделена этими разнообразными функциями, речь идет уже не столько об управлении двигателем, сколько об управлении автомобилем в целом, ибо командные сигналы вмешиваются в функционирование и других узлов автомобиля. При этом ста­новится возможным реализовать связь управляющего устройства с автома­тической коробкой передач, что, в частности, способствует уменьшению ударных нагрузок при переключении передач, создавая благоприятный ре­жим эксплуатации. Оказывается возможным также регулирование крутя­щего момента на ведущих колесах. Кроме того, можно обеспечить и упра­вление функционированием регуляторов скорости автомобиля, которые в будущем станут весьма сложными устройствами, выполня­ющими при помощи радара автоматические функции управления движени­ем с целью максимального облегчения вождения.

Общим для любых систем впрыска с электронным управлением являет­ся наличие датчика положения дроссельной заслонки, который в простей­ших системах служит ос­новным источником информации о нагрузке двигателя. Вместе с тем боль­шое значение имеет датчик давления, пневматически соединенный с впу­скным трубопроводом и регистрирующий абсолютное давление в нем. Для определения нагрузки двигателя особенно важно измерение количест­ва проходящего через впускную систему воздуха. В системах впрыска Мотроник в зависимости марки и от модели автомобиля могут применять­ся следующие датчики расхода воздуха:

· объемные расходомеры воздуха (LMM);

· термоанемометрические массовые расходомеры воздуха с нагревае­мой нитью (LHM);

· термоанемометрические массовые расходомеры воздуха с нагревае­мой пленкой (HFM).

Работа системы впрыска Мотроник. Пуск двигателя. В течение всего процесса пуска двигателя осуществляется расчет коли­чества впрыскиваемого форсунками топлива. Кроме того, для первых ко­мандных импульсов на впрыскивание в отсутствие вращения коленчатого вала устанавливается режим «синхронного впрыска». Повышенное количе­ство топлива, впрыскиваемого в соответствии с низкой температурой дви­гателя, обусловлено образованием топливной пленки на внутренних стенках впускного трубопровода и необходимостью компенсации повышенной по­требности в топливе двигателя при работе с низкой частотой вращения. Не­посредственно после начала вращения коленчатого вала вплоть до заверше­ния режима пуска по мере увеличения частоты вращения осуществляется постепенное уменьшение порции впрыскиваемого топлива.

Система Мотроник осуществляет также согласование параметров зажи­гания с параметрами процесса пуска. Угол опережения зажигания регули­руется в зависимости от температуры охлаждающей жидкости и частоты вращения коленчатого вала так, чтобы был обеспечен легкий пуск и быст­рый прогрев двигателя.

Послепусковой период. В течение послепускового периода (фазы, начинающейся непосредст­венно после завершения стадии пуска) осуществляется постепенное сниже­ние количества впрыскиваемого топлива в зависимости от температуры ох­лаждающей жидкости и промежутка времени, прошедшего с момента за­вершения стадии пуска. Угол опережения зажигания изменяется в соответ­ствии с количеством впрыскиваемого топлива. Послепусковой период, та­ким образом, плавно переходит в стадию прогрева двигателя.

Прогрев двигателя. В зависимости от конструктивных особенностей двигателя и системы вы­пуска отработавших газов режим прогрева может быть реализован разными способами. Решающими факторами для расчета параметров управления дви­гателем при прогреве является его готовность к началу движения, а также оп­тимизация состава отработавших газов и расхода топлива. Сочетание бедной рабочей смеси с более поздним зажиганием при прогреве двигателя повыша­ет температуру отработавших газов, что необходимо для приведения каталитического нейтрализатора в рабочее состояние. Другую возможность повышения тем­пературы отработавших газов предоставляет использование богатой смеси вместе с нагнетанием дополнительного воздуха, который подается в систему выпуска за выпускны­ми клапанами спустя короткое время с момента пуска двигателя. Для подачи воздуха, например, может использоваться специальный насос. Избыток воз­духа при достаточном разогреве системы выпуска приводит к окислению СН и СО и достижению желаемой высокой температуры отработавших газов.

Оба способа обеспечивают быстрое приведение каталитического нейтрализатора в рабочее состояние. Наряду с воздействием на угол опережения зажигания и параметры впрыска ускоренный разогрев нейтрализа­тора может быть реализован также и за счет повышения частоты вращения коленчатого вала на холостом ходу. При достижении необходимой темпе­ратуры каталитического нейтрализатора осуществляется регулирование впрыска, обеспечивающее коэффициент избытка воздуха, равный 1, и ус­танавливается соответствующий угол опережения зажигания.

 Корректировка впрыска топлива при ускорении и замедлении движения автомобиля. Часть впрыскиваемого топлива при очередном открытии впуск­ного клапана сразу не попадает в цилиндр, а остается на стенках трубопровода в виде жидкой пленки. Количество топлива, по­стоянно находящегося в виде та­кой пленки, резко возрастает с повышением нагрузки и с увели­чением количества впрыскивае­мого топлива. Во избежание обед­нения горючей смеси, обуслов­ленного оседанием части топлива на стенках впускной системы, во время разгона автомобиля должен быть обеспечен впрыск соответст­вующего дополнительного коли­чества топлива. Для улучшения ус­ловий смесеобразования могут применяются форсунки с допол­нительным пневматическим рас-пыливанием топлива, что позво­ляет уменьшить количество топ­лива, оседающего на стенках впускного трубопровода. Такая рабочая форсунка в разрезе показана на рис. 4.41. При снижении нагрузки происходит высвобождение осевшего на стен­ках впускного трубопровода топлива. Поэтому при замедлении движения время впрыска должно быть соответственно сокращено. Во время движе­ния в режиме торможения двигателем (ПХХ) впрыск топлива прекращает­ся полностью.

Рис. 4.41. Форсунка с подачей воздуха:

1 – направление подачи воздуха; 2 – направление подачи топлива

 

Управление частотой вращения коленчатого вала на холостом ходу. Управление частотой вращения коленчатого вала на холостом ходу долж­но обеспечивать соответствие между крутящим моментом и реальной нагруз­кой. Последняя на холостом ходу складывается из различных внутренних нагрузочных моментов, моментов сил трения в кривошипно-шатунном меха­низме, приводе клапанов и дополнительных агрегатов (например, насоса си­стемы охлаждения, кондиционера или гидроусилителя рулевого управления). Внутренние моменты сил трения в течение срока службы двигателя претер­певают постепенное изменение и, кроме того, они сильно зависят от рабочей температуры. На процесс регулирования частоты вращения оказывают влия­ние положение дроссельной заслонки и температура охлаждающей жидкости, а также сигналы датчиков нагрузки, поступающие от дополнительных агрегатов. Заданному значению частоты вращения коленчатого вала двигате­ля для каждого режима соответствует определенный расход воздуха.

Регулирование фаз газораспределения воздействием на распределительный вал. За счет регулирования фаз газораспределения воздействием на распреде­лительный вал появляется возможность оказать влияние на наполнение ци­линдров, чтобы обеспечить возможность максимального повышения мощно­сти и крутящего момента при минимальном расходе топлива и низкой ток­сичности отработавших газов. При этом гидравлические или электрические исполнительные механизмы, управляемые системой Мотроник, поворачива­ют впускной и выпускной распределительные валы относительно коленчато­го на угол, определяемый частотой вращения коленчатого вала или наполне­нием цилиндров.

 Регулирование угла опережения зажигания по детонации. Электронное управление моментом зажигания предоставляет возможность очень точно регулировать угол опережения зажигания в зависимости от час­тоты вращения коленчатого вала, нагрузки и температуры охлаждающей жид­кости. В системах Мотроник для регулирования угла опережения зажигания по началу детонации применяется датчик детонации, подробное описание которого дается в разделе «Система зажигания».

Улавливание топливных испарений. В современные системы впрыска, согласно требованиям «Евро-3» и «Евро-4»,устанавливается система улавливания топливных испарений, состоящая из угольного адсорбера и электромагнитного клапана продувки адсорбера. С помощью указанной системы происходит улавливание испаряющихся углеводородов из топливного бака, их адсорбирование и подача во впускной трубопровод через электромагнитный клапан, который открывается по сигналам блока управления.

Крышка топливного бака выполняется герметичной. Пары топлива улавливаются емкостью с древесным углем. По мере испарений пары адсорбируются в емкости и затем по сигналу блока управления выводятся через электромагнитный клапан во впускной трубопровод и затем в цилиндры двигателя. Чтобы обеспечить устойчивую работу двигателя на холостом ходу и защитить каталитический нейтрализатор от переообогащения смеси, клапан закрывается, а на режимах прогретого двигателя и больших нагрузок открывается.

Рецеркуляция отработавших газов. В целях снижения выбросов оксидов азота, количество которых зависит главным образом от температуры сгорания топливовоздушной смеси, в систему выпуска двигателя устанавливают клапана перепуска (рецеркуляции) отработавших газов, которые работают по сигналам блока управления. Перепуск части отработавших газов во впускной трубопровод, на определенных режимах работы двигателя, позволяет снизить температуру цикла, а значит и выброс оксидов азота.

 










Последнее изменение этой страницы: 2018-04-11; просмотров: 563.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...