Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Характеристики измерительных приборов




 Основными характеристиками являются:

1. Уравнения преобразования (градуировочная характеристика).

2. Чувствительность.

3. Порог чувствительности.

4. Диапазон измерений.

5. Область рабочих частот.

6. Статический и динамические погрешности.

7. Собственная мощность потребляемая прибором.

8. Быстродействие.

9. Надежность.

Градуировочная характеристика отражает функциональную зависимость между выходным сигналом и входным .

Чувствительность характеризует способность прибора реагировать на изменения входного сигнала, отражает зависимость по выражению:

 

Порог чувствительности  отражает изменения входного сигнала, вызывающего наименьшие изменения выходного сигнала, которые могут быть обнаружены наблюдателем с помощью данного прибора без дополнительных устройств.

Диапазон измерений- это область значений измеряемого сигнала для которой нормированы допускаемые погрешности.

Область рабочих частот- полоса частот, в пределах которой погрешность прибора, вызванная изменением частоты, не превышает допускаемого предела.

По способу выражения различают абсолютную, относительную, приведенную, основную и дополнительную погрешности самого прибора.

Абсолютная погрешность прибораотражает разность между показаниями прибора и истинным значением измеряемой физической величиной. Эта погрешность взятая с обратным знаком называется поправкой ().

Относительная погрешность() отражает отношение абсолютной погрешности к истинному значению измеряемой величины и выражается в процентах.

 

Относительная погрешность обычно существенно изменяется вдоль шкалы прибора. С уменьшением значения измеряемой величины- увеличивается.

Приведенная погрешность()- отношение абсолютной погрешности прибора к нормированному значению и выражается в процентах.

 

Дополнительная погрешностьприбора - погрешность вызываемая действием отдельных влияющих величин вследствие отклонения их от нормальных.

Класс точности- обобщенная характеристика определяемая пределами допускаемых основных и дополнительных погрешностей. Он характеризует свойства приборов в отношении точности измерений, но не является непосредственным показателем точности измерений, выполняемых с помощью этих приборов.

 

АНАЛОГОВЫЕ ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Общие сведения

 

В аналоговых электромеханических измерительных приборах непосредственной оценки электромагнитная энергия, подведенная к прибору непосредственно из измеряемой цепи, преобразуется в механическую энергию углового перемещения подвижной части относительно неподвижной.

Электромеханические измерительные приборы (ЭИП) применяет для измерения тока, напряжения, мощности, частоты, фазовых сдвигов, сопротивлений и других электрических величин на постоянном и переменном токе преимущественно промышленной частоты 50 Гц. Эти приборы относят к приборам прямого преобразования. Они состоят из электрического преобразователя (измерительной цепи), электромеханического преобразователя (измерительного механизма), отсчетного устройства (рис. 2.1).

 

Рисунок 2.1 – Схема электромеханического аналогового измерительного прибора

 

Измерительная цепь прибора обеспечивает преобразование электрической измеряемой величины X в некоторую промежуточную электрическую величину Y (ток или напряжение), функционально связанную с измеряемой величиной X. Величина Y непосредственно воздействует на измерительный механизм ИМ.

В зависимости от характера преобразования измерительная цепь может представлять собой совокупность преобразовательных элементов (резисторов, конденсаторов, выпрямителей, термопар и др.).

Различные измерительные цепи позволяют использовать один и тот же измерительный механизм при измерениях разнородных величин, напряжения, тока, сопротивления, меняющихся в широких пределах.

Измерительный механизм, являясь основной частью конструкции прибора, преобразует электромагнитную энергию в механическую энергию, необходимую для угла отклонения α его подвижной части относительно неподвижной, т. е. .

Подвижная часть измерительного механизма ИМ представляет собой механическую систему с одной степенью свободы относительно оси вращения.

Дифференциальное уравнение моментов, описывающее работу ИМ, имеет вид:

                                                (2.1)

т. е. момент количества движения равен сумме моментов, действующих на подвижную часть.

В (2.1) J - момент инерции подвижной части ИМ; α - угол отклонения подвижной части;  - угловое ускорение.

На подвижную часть измерительного механизма при ее движении воздействуют:

вращающий момент М, определяемый для всех ЭИП скоростью изменения энергии электромагнитного поля , сосредоточенной в механизме, по углу отклонения α подвижной части. Вращающий момент является некоторой функцией измеряемой величины X, а следовательно, Y (тока, напряжения, произведения токов) и α:

                         (2.2)

где п = 1, 2;

противодействующий момент , создаваемый механическимпутем с помощью спиральных пружин, растяжек, подводящих проводов и пропорциональный углу отклонения а подвижной части

                                     (2.3)

где W — удельный противодействующий момент на единицу угла закручивания пружины (зависит от материала пружины и ее геометрических размеров);

момент успокоения , т. е. момент сил сопротивления движению, всегда направленный навстречу движению и пропорциональный угловой скорости отклонения:

                                   (2.4)

где Р - коэффициент успокоения (демпфирования).

После подстановки (2.2) - (2.4) в (2.1) получают дифференциальное уравнение отклонения подвижной части механизма:

                      (2.5)

или

                                    (2.6)

Установившееся отклонение подвижной части механизма определяется равенством вращающего и противодействующего моментов, т. е. , что бывает, когда два первых члена левой части, дифференциального уравнения (2.6) равны нулю. Подстановкой в равенство  аналитических выражений моментов получают уравнение шкалы прибора, показывающее зависимость угла отклонения α подвижной части от значения измеряемой величины и параметров измерительного механизма.

В зависимости от способа преобразования электромагнитной энергии, в механическое угловое перемещение подвижной части измерительного механизма приборы делят на магнитоэлектрические, электродинамические, ферродинамические, электромагнитные, электростатические и др.

Отсчетное устройство аналоговых электромеханических приборов чаще всего состоит из указателя, жестко связанного с подвижной частью измерительного механизма, и неподвижной шкалы. Шкала представляет собой совокупность отметок, которые расположены вдоль какой-либо линии и изображают ряд последовательных чисел, соответствующих значениям измеряемой величины. Отметки имеют вид штрихов, черточек, точек и т. п. Указатели бывают стрелочные (механические) и световые.

По начертанию шкалы бывают прямолинейные (горизонтальные или вертикальные), дуговые (при дуге до 180° включительно) и круговые (при дуге более 180°).

По характеру расположения отметок различают шкалы равномерные и неравномерные, односторонние относительно нуля, двусторонние и безнулевые. Шкалы градуируются либо в единицах измеряемой величины (именованная шкала), либо в делениях (неименованная шкала).

Числовое значение измеряемой величины равно произведению числа делений прочитанных по шкале, на цену (постоянную) прибора.

Цена деления - значение измеряемой величины, соответствующее одному делению шкалы.

Поскольку электромеханические измерительные приборы являются приборами прямого преобразования, чувствительность прибора в целом определяется чувствительностью цепи и чувствительностью измерительного механизма :

                                                              (2.7)

Классы точности аналоговых, электромеханических измерительных приборов следующие: 0,05; 0,1; 0,2; 0,5; .1 0; 1,5; 2,5; 4,0.

 

Узлы и детали измерительных приборов. Для большинства электромеханических измерительных приборов (ЭИП), несмотря на разнообразие измерительных механизмов, можно выделить общие узлы и детали - устройства для установки подвижной части измерительного механизма, создания противодействующего момента, уравновешивания; успокоители; арретир; корректор и др.

Так как любой измерительный механизм электромеханического прибора состоит из подвижной и неподвижной частей, то для обеспечения свободного перемещения подвижной части последнюю устанавливают на опорах (рисунок 2.2, а), растяжках (рисунок 2.2, б), подвесе (рис. 2.2, в).

Рисунок 2.2 – Установка подвижной части измерительного механизма

При установке подвижной части измерительного механизма на опорах последние представляют собой легкую алюминиевую трубку, в которую запрессовывают керны (стальные отрезки). Концы кернов затачивают и шлифуют на конус с закруглением. Опираются керны на агатовые или корундовые подпятники. При установке подвижной части измерительного механизма на кернах между керном и подпятником возникает трение, что вносит погрешность в показания прибора. В приборах высокого класса точности (лабораторных) для уменьшения трения шкала устанавливается горизонтально, а ось вертикально. При этом нагрузка сосредоточена в основном на нижней опоре.

Установка подвижной части измерительного механизма на растяжках наиболее распространена в приборах. Растяжки представляют собой две тонкие ленты из бронзового сплава, на которых подвешивается подвижная часть измерительного механизма. Их наличие обеспечивает отсутствие трения в опорах, облегчает подвижную систему, повышает виброустойчивость. Растяжки используются также для подведения тока к обмотке рамки и создания противодействующего момента.

Установку подвижной части измерительного механизма на подвесе используют в особо чувствительных приборах. Подвижную часть, измерительного механизма подвешивают на тонкой металлической (иногда кварцевой) нити. Ток в рамку подвижной части подводят через нить подвеса и специальный безмоментный токоподвод из золота или серебра.

При транспортировке подвижную часть измерительного механизма закрепляют неподвижно с помощью арретира.

Противодействующий момент в измерительном механизме с установкой подвижной части на опорах (рисунок 2.3) создается одной или двумя плоскими спиральными пружинами 5, 6,выполненными из оловянно-цинковой бронзы. Пружины используются также и в качестве токоподводов к обмотке рамки подвижной части. Одним концом пружина крепится к оси или полуоси, а другим - к поводку 4 корректора. Корректор служит для установки на нуль стрелки невключенного прибора; состоит из винта 9 с эксцентрично расположенным пальцем 8, вилки 7 с поводком. Винт 9 корректора выводится на переднюю, панель корпуса прибора, вращаясь, он движет вилку 7, что вызывает закручивание пружины и соответственно перемещение стрелки 5. Ось 2 заканчивается кернами, опирающимися на подпятники 1.

Рисунок 2.3 - Общие детали подвижной части измерительного механизма на опорах

Для уравновешивания подвижной части служат грузики противовесы 10. Измерительный механизм считается уравновешенным, когда центр тяжести подвижной части совпадает с осью вращения. Хорошо уравновешенный измерительный механизм показывает при различных положениях одно и то же значение измеряемой величины.

Для создания необходимого успокоения измерительные механизмы снабжают успокоителями, развивающими момент направленный навстречу движению (время успокоения не более 4с). В измерительных механизмах наиболее часто применяются магнитоиндукционные и воздушные успокоители и реже жидкостные (когда требуется очень большое успокоение).

Магнитоиндукционный успокоитель (рис. 2.4,а) состоит из постоянного магнита 1 алюминиевого диска 2, жестко связанного с подвижной частью механизма и свободно перемещающегося в поле постоянного магнита. Успокоение создается за счет взаимодействия токов, индуктированных в диске при его перемещении в магнитном поле постоянного магнита с потоком этого же магнита.

Рисунок 2.4 – Типы успокоителей

Воздушный успокоитель (рис. 2.4,б) представляет собой камеру 1, в которой перемещается легкое алюминиевое крыло (или поршенек) 2,жестко связанное с подвижной частью измерительного механизма. Приперемещении воздуха из одной части камеры в другую через зазор (между камерой и крылом) тормозится движение крыла и колебания подвижной части быстро затухают.

Воздушные успокоители слабее магнитоиндукционных.










Последнее изменение этой страницы: 2018-04-12; просмотров: 283.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...