Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Деформируемые сплавы,  упрочняемые термической обработкой.




К таким сплавам относятся дюралюмины (сложные сплавы систем алюминий – медь – магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец.

Дюралюмины обычно подвергаются закалке с температуры 500oС и естественному старению, которому предшествует двух-, трехчасовой инкубационный период. Максимальная прочность достигается через 4…5 суток.

Широкое применение дюралюмины находят в авиастроении, автомобилестроении, строительстве.

Высокопрочными стареющими сплавами являются сплавы, которые кроме меди и магния содержат цинк. Сплавы В95, В96 имеют предел прочности около 650 МПа. Основной потребитель – авиастроение (обшивка, стрингеры, лонжероны).

Ковочные алюминиевые сплавы АК: АК8 применяются для изготовления поковок. Поковки изготавливаются при температуре 380…450oС, подвергаются закалке от температуры 500…560oС и старению при 150…165oС в течение 6…15 часов.

В состав алюминиевых сплавов дополнительно вводят никель, железо, титан, которые повышают температуру рекристаллизации и жаропрочность до 300oС.

Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей.

 

Литейные алюминиевые сплавы.

К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Присадка к силуминам магния, меди содействует эффекту упрочнения литейных сплавов при старении. Титан и цирконий измельчают зерно. Марганец повышает антикоррозионные свойства. Никель и железо повышают жаропрочность.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

 

Контрольные вопросы

1. Дайте определение  алюминия.

2. Назовите основные механические свойства алюминия.

3. Назовите классификацию сплавов алюминия по технологическим свойствам.

4. Дайте характеристику деформируемым сплавам, не упрочняемым термической обработкой.

5. Назовите классификацию сплавов в зависимости от степени упрочнения.

6. Дайте характеристику деформируемым сплавам, упрочняемым термической обработкой.

7. Как маркируются алюминиевые сплавы?

8. Дайте определение  дюралюминам.

9. Дайте определение высокопрочным стареющим сплавам.

10. Назовите область применения высокопрочных стареющих сплавов.

11. Дайте определение ковочным алюминиевым сплавам.

12. Назовите область применения ковочных алюминиевых сплавов.

 

Магниевые и титановые сплавы

 

Магний – очень легкий металл, его плотность – 1,74 г/см3. Температура плавления – 650oС. Магний имеет гексагональную плотноупакованную кристаллическую решетку. Очень активен химически, вплоть до самовозгорания на воздухе. Механические свойства технически чистого магния (Мг1): предел прочности – 190 МПа, относительное удлинение – 18 %, модуль упругости – 4500 МПа.

Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные.

Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420oС, старение при температуре 260…300oС в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа.

Деформируемые магниевые сплавы.

Магний плохо деформируется при нормальной температуре. Пластичность сплавов значительно увеличивается при горячей обработке давлением (360…520oС). Деформируемые сплавы маркируют МА1, МА8, МА9, ВМ 5—1.

Из деформируемых магниевых сплавов изготавливают детали автомашин, самолетов, прядильных и ткацких станков. В большинстве случаев эти сплавы обладают удовлетворительной свариваемостью.

Литейные магниевые сплавы.

Литейные сплавы маркируются МЛ3, МЛ5, ВМЛ–1. Последний сплав является жаропрочным, может работать при температурах до 300oС.

Отливки изготавливают литьем в землю, в кокиль, под давлением. Необходимы меры, предотвращающие загорание сплава при плавке, в процессе литья.

Из литейных сплавов изготавливают детали двигателей, приборов, телевизоров, швейных машин.

Магниевые сплавы, благодаря высокой удельной прочности широко используются в самолето- и ракетостроении.

 

Титан и его сплавы

Титан - серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Чистый титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.

Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах) благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500oС становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ по сравнению с другими:

· сочетание высокой прочности с хорошей пластичностью;

· малая плотность, обеспечивающая высокую удельную прочность;

· хорошая жаропрочность, до 600…700oС;

· высокая коррозионная стойкость в агрессивных средах.

Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур.

В результате легирования титановых сплавов можно получить нужный комплекс свойств. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения. Элементы, повышающие температуру превращения, способствуют стабилизации α- твердого раствора и называются α-стабилизаторами, это – алюминий, кислород, азот, углерод.

Сплавы на основе титана можно подвергать всем видам термической обработки, химико-термической и термомеханической обработке. Упрочнение титановых сплавов достигается легированием, наклепом, термической обработкой.

Часто титановые сплавы легируют алюминием, он увеличивает прочность и жаропрочность, уменьшает вредное влияние водорода, увеличивает термическую стабильность. Для повышения износостойкости титановых сплавов их подвергают цементации или азотированию.

Основным недостатком титановых сплавов является плохая обрабатываемость режущим инструментом.

По способу производства деталей различаются деформируемые (ВТ 9, ВТ 18) и литейные (ВТ 21Л, ВТ 31Л) сплавы.

Области применения титановых сплавов:

· авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);

· химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);

· оборудование для обработки ядерного топлива;

· морское и речное судостроение (гребные винты, обшивка морских судов, подводных лодок);

· криогенная техника (высокая ударная вязкость сохраняется до –253oС).

 

Контрольные вопросы

1. Дайте характеристику деформируемым магниевым сплавам.

2. Назовите область применения деформируемых магниевых сплавов.

3. Дайте характеристику литейным магниевым сплавам.

4. Назовите область применения литейных магниевых сплавов.

5. Дайте характеристику титану.

6. Назовите область применения титана.

7. Назовите область применения титана.

8. Назовите преимущества применения титановых сплавов.

 










Последнее изменение этой страницы: 2018-04-11; просмотров: 384.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...