Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Химико-термическая обработка




 

Химико-термической обработкой (поверхностным легированием) называют обработку, заключающуюся в сочетании термического и химического воздействий на металлы и сплавы для изменения химического состава структуры и свойств в поверхностных слоях.

Химико-термическая обработка (ХТО) сводится к диффузионному насыщению поверхностного слоя стали неметаллами (С, N, Si, В и др.) или металлами (Сг, Al и др.) в процессе выдержки при определенной температуре в активной жидкости или газовой среде.

Цель химико-термической обработки: повышение поверхностной твердости, износостойкости, предела выносливости, коррозионной стойкости, жаростойкости (окалиностойкости), кислотоустойчивости.

Наибольшее применение в промышленности получили следующие виды химико-термической обработки: цементация; нитроцементация; азотирование; цианирование; диффузионная металлизация.

Цементация (науглероживание)— это процесс насы­щения поверхности стали углеродом при температуре 930—950°C. После цементации изделия подвергаются за­калке и низкому отпуску. В результате их поверхность становится более твердой, износостойкой, выносливой при изгибе и круче­нии. Цементация проводится в твердой или газообразной насыщающей среде (карбюризаторе). В качестве газообраз­ного карбюризатора используют природный газ.

В зависимости от применяемого карбюризатора цементация подразделяется на три вида: цементация твердым карбюризатором; газовая цементация (метан, пропан, природный газ).

Газовая цементация. Детали нагревают до 900-950ºС в специальных герметически закрытых печах, в которые непрерывным потоком подают цементующий углеродосодержащий газ (природный или искусственный).

Процесс цементации в твердом карбюризаторе заключается в следующем. Детали, упакованные в ящик вместе с карбюризатором (в качестве твердо­го карбюризатора используется древесный уголь или ка­менноугольный полукокс и торфяной кокс с углекислым: барием и кальцинированной содой), нагревают до 200- 225°C и в течении длительного времени выдерживают при этой температуре, затем охлаждают и подвергают термической обработке.

Цементации любым из рассмотренных выше способов подвергаются детали из углеродистой и легированной стали с содержанием углерода не более 0,2%. Цементация легированных сталей, содержащих карбидообразующие элементы Cr, W, V, дает особо хорошие результаты: у них, кроме повышения поверхностной твердости и износостойкости, увеличивается также предел усталости.

Азотирование - это процесс насыщения поверхностного слоя различных металлов и сплавов, стальных изделий или деталей азотом при нагреве до температуры 500-650°C в среде аммиака в соответствующей среде. Повышается твердость поверхности изделия (сохраняется при на­греве до 450-550°C), выносливости, износостойкости, повышение коррозионной стойкости.

Цианирование- это процесс насыщения поверхности стали одновременно углеродом и азотом при 820—950°C в расплавленных цианистых солях для повышения её твердости, износостойкости и предела выносливости.

В зависимости от используемой среды различают цианирование: в твердых средах; в жидких средах; в газовых средах.

В зависимости от температуры нагрева цианирование подразделяется на низкотемпературное и высокотемпературное.

Цианирование в жидких средах производят в ваннах с расплавленными солями.

Цианирование в газовых средах (нитроцементация). Процесс одновременного насыщения поверхности детали углеродом и азотом. Для этого детали нагревают в среде, состоящей из цементующего газа и аммиака, то есть нитроцементация совмещает в себе процессы газовой цементации и азотирования.

 

Контрольные вопросы

1. Дайте определение химико-термической обработки.

2. Назначение химико-термической обработки.

3. Назовите виды химико-термической обработки.

4. Технология процесса цементации.

5. Назовите виды цементации в зависимости от применяемого карбюризатора.

6. Технология процесса азотирование.

7. Технология процесса цианирование.

8. Назовите классификацию цианирования в зависимости от используемой среды.

9. Назовите классификацию цианирования в зависимости от температуры нагрева.

 



Тема 5. Легированные стали и твердые сплавы

Легирующие элементы и их влияние на механические свойства стали

 

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100)oС.

Дополнительные легирующие элементы.

Бор - 0,003%. Увеличивает прокаливаемость, а также повышает порог хладоломкости (+20…-60) oС.

Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.

Введение молибдена(0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снижает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

Ванадийв количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает прочность и вязкость.

Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.

Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают стали – хромансиль (20ХГС, 30ХГСА). Стали обладают хорошим сочетанием прочности и вязкости, хорошо свариваются, штампуются и обрабатываются резанием. Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения термической обработки улучшает комплекс механических свойств.

 

Контрольные вопросы

 

1. Назовите основные легирующие элементы.

2. Назовите дополнительные легирующие элементы.

3. Каково влияние бора и марганца на механические свойства стали.

4. Каково влияние титана и молибдена на механические свойства стали.

5. Каково влияние ванадия и никеля на механические свойства стали.

6. Каково влияние свинца, кальция на механические свойства стали.

 










Последнее изменение этой страницы: 2018-04-11; просмотров: 506.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...