Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Типы рифов. Выделяется несколько типов коралловых рифов.




1. Окаймляющие, или береговые, рифы, которые формируются у берега и часто бывают соединены с сушей материков или островов.

2. Барьерные, отделенные от коренного берега материка или острова коралловыми лагунами. Мощность такого рифа может существенно превышать мощность окаймляющих рифов. Это связано главным образом с тектоническим прогибанием территории при условии успевающего за ним процесса роста коралловых построек. Ярким примером является так называемый Большой Барьерный риф, протягивающийся вдоль северо-восточного берега Австралии почти на 2 тыс. км при средней ширине 150 км и мощности (по данным бурения) до 150 м. Он отделяется от материка .лагуной относительно небольшой глубины, в пределах которой формируются внутрилагунные береговые барьерные рифы (рис. 10.9). В тропическом поясе юго-западной части Тихого океана многие вулканические острова полностью или частично окаймлены барьерными рифами, отделенными от островов лагунами.

3. Атоллы, к которым относятся кольцеобразные коралловые рифы, имеющие наибольшее распространение в Тихом и Индийском океанах (рис. 10.10). По данным Ч. Дарвина, подтвержденным последующими исследованиями, большинство атоллов можно считать разновидностью кольцевых барьерных рифов, в которых острова в результате медленных тектонических движений опустились и на их месте образовались лагуны, соединяющиеся с открытым морем узким каналом. В лагунах атоллов и в прилежащих частях ложа океана происходит накопление карбонатных осадков, представляющих обломки и тонкий детрит (лат. "детритус - истертый) различных карбонатных организмов - водорослей, кораллов, в небольшом количестве раковины фораминифер и моллюсков. Местами наблюдаются примеси терригенного, а местами и вулканогенного материала.

В океанах и морях местами развиты ракушечные осадки - это мелководные известковые морские осадки - ракушечники (ракушняки), представляющие собой скопления целых или раздробленных раковин моллюсков и других организмов с карбонатным скелетом. Их гранулометрический состав зависит от размеров раковин и степени их сохранности. Наибольшее развитие карбонатные ракушечные осадки имеют в пределах шельфовых зон аридных областей. Этому способствуют: 1) малое поступление с суши терригенного материала; 2) достаточно высокая температура воды, обеспечивающая сохранность известковых раковин. В более холодных водах океана ракушечные осадки встречаются в виде отдельных относительно небольших пятен и только там, где наблюдается наибольшая биомасса моллюсков.

Полигенные осадки. К ним относится "красная глубоководная глина коричневого цвета различных оттенков, занимающая, по данным А.П. Лисицына, свыше 35-50 % площади дна Тихого океана и приблизительно около 25-30 % - Атлантического и Индийского. Она состоит из наиболее тонких частиц. Содержание пелитовой фракции в ней нередко достигает 95-98 %, при этом на долю наиболее тонких субколлоидных фракций (<0,005 мм) приходится до 70-75 %. Распространение типичных красных глин приурочено к наиболее глубоким частям океана ниже критической глубины карбонатного осадконакопления и к удаленным от континента частям океана. Содержание в них СаСОз обычно меньше 1 %, редко до 3 % и только при переходе к фораминиферовым илам возрастает до 10 %. Также невелико в них количество биогенного кремнистого материала, которое несколько увеличивается в экваториальных районах океана за счет примеси радиолярий и теплолюбивых диатомей.

В составе красных глин участвует осадочный материал различного генезиса: 1) нерастворимый материал, входящий в раковины фораминифер. А.П. Лисицын приводит в подтверждение этого результаты лабораторных исследований - получение красной глины путем растворения фораминиферовых илов; 2) вулканогенный пепловый материал дальнего разноса; 3) тонкодисперсные частицы терригенного материала, приносимого реками, достигающие удаленных частей океана и медленно оседающие на дно; 4) пылевые частицы эолового разноса; 5) метеорная пыль (включения шариков никелистого железа); 6) биогенный материал - зубы акул, реже слуховые косточки китов и др.; 7) обычный компонент "красных глин - аутигенный глубоководный минерал из группы цеолитов (водных алюмосиликатов). Появление цеолитовых разностей, а также заметное присутствие космических шариков свидетельствуют о чрезвычайно малых скоростях накопления "красной" глубоководной глины (около 1 мм/1000 лет).

Вопрос 35. Геологическая деятельность человека. Изменение поверхности Земли и создание антропогенного ландшафта. Проблемы загрязнения окружающей среды в период добычи и транспортировки полезных ископаемых и пути решения этих проблем. Понятие о таком явлении впервые ввел наш земляк В. И. Вернадский, который показал, что уже с начала ХХ в. деятельность человека стала по своим масштабам и многообразием сравнительной с природными процессами. Можнодаже говорить о негативных или позитивные последствия подобного техногенеза, выявлять его влияние на литосферу, гидросферу, атмосферу. Такая деятельность человека, естественно, заслуживает специального изучения. Общий характер воздействия человека на окружающую среду сводится к изменению рельефа, нарушение растительного покрова и изменения характера гидросети, опыление атмосферы. Особенно активным, хотя и малозаметным является его влияние на подземные воды, который происходит в результате различных видов горнодобывающих работ. Нарушается режим вод, происходит их загрязнение и засоление, отдельные водоносные горизонты могут быть даже уничтожены. В районах крупных городов и плотин, крупных водоемов результатом роста нагрузки на почвы и строительства подземных дамб становится подтопления, или повышение уровня подземных вод. Однако геологическая деятельность человека не должна рассматриваться только как негативное воздействие на окружающую среду. Многие мероприятия направлены на исправление неблагоприятных природных процессов. Например, охраняются отдельные участки берегов или морские пляжи от разрушения. Условно то, что может быть названо геологической деятельностью человека, следует разделить на несколько групп, которые включают разработку полезных ископаемых, строительство гидросооружений, а также городское, промышленное, дорожное строительство и, наконец, меры, регулирующие естественные процессы. Современные технологии и технический уровень позволяют человеку существенным образом изменять геологическую среду. Огромные по масштабам воздействия на природную среду оказываются сопоставимыми с геологическими процессами. Именно объемы производимых работ и те изменения, которые претерпевает геологическая среда в результате хозяйственного освоения, дали основания академику В. И. Вернадскому признать действия человека «огромной геологической силой».Техногенными, или антропогенными, воздействиями называют различные по своей природе, механизму, длительности и интенсивности влияния, оказываемые деятельностью человека на объекты литосферы в процессе его жизнедеятельности и хозяйственного производства. Антропогенное воздействие на геологическую среду по своей сути является геологическим процессом, так как оно по размерам и масштабам проявления вполне сопоставимо с естественными процессами экзогенной геодинамики. Разница заключается только в скорости течения процесса. Если геологические процессы протекают медленно и растягиваются на сотни тысяч и миллионы лет, то скорость воздействия человека на среду укладывается в годы. Еще одна отличительная черта, характерная для антропогенной деятельности, — стремительное нарастание процессов воздействия. вместе с кратковременными и значительными воздействиями на земную поверхность стихийных природных явлений на нее медленно, постепенно, в течение многих тысячелетий действуют самые разнообразные геологические процессы. Под их воздействием разрушаются горы, расширяются ущелья рек, видоизменяются очертания морских побережий, возникают и исчезают пустыни.
Поверхность Земли видоизменяется под действием климата (действие сезонных и суточных температур и влажности), ветра, ледников, поверхностных и подземных вод, разнообразных организмов и т. д. Однако как же ученые смогли определить даже не деятельность, скорее, результаты того или иного процесса? Ведь когда говорят, что река размывает берег, переносит камни, окатывает их, постепенно истирает, выносит в море, то это вовсе не значит, что геологи годами сидели на берегу реки или ходили вдоль русла, а тем более опускались на дно моря, чтобы увидеть и проследить весь процесс образования галек, превращения их в песок и формирование осадков в русле, пойме или в море. Вовсе нет. Для того чтобы вывести эту закономерность, ученые сравнивали между собой форму камней, их величину от истоков рек до устья, анализировали минеральный состав песка, видели, как иногда река подмывает берег и происходят обвалы или меняются направления русла. Эти превращения хоть и происходят на наших глазах, но идут очень медленно. Ведь для того чтобы превратить обломок гранита в гальку, а тем более истереть его песок, необходимо не одно столетие.
Точно таким же образом поступают геологи, когда изучают геологическую деятельность ледников, морей и озер, ветра и организмов. Они видят различные фазы развития на разных объектах, затем мысленно нанизывают их на воображаемую непрерывную ленту, и тогда все фрагменты оказываются связанными единой логической последовательностью. АНТРОПОГЕННЫЙ ЛАНДШАФТ-природный ландшафт, преобразованный человеком, чаще целенаправленно, реже неосознанно. При глубоком изменении или значительном изъятии из ландшафтной целостности одного или двух его компонентов возникает цепная реакция изменений. Например, добыча руды открытым способом понижает уровень грунтовых вод, влечет обмеление водотоков, усыхание растительности. Сплошная вырубка лесов на больших площадях также вызывает обмеление рек, понижение кислорода в воздухе и тому подобное. В первобытном обществе примитивные средства производства не могли изменить природный ландшафт так, чтобы он не мог восстановиться естественным путем. Начиная с XX в. технические средства изменения ландшафтов и потребности людей выросли настолько, что изъятие из ландшафта какой-либо его части уже не успевало компенсироваться естественным возобновлением. Практически на Земле не осталось хотя бы слегка не нарушенных естественных ландшафтов. По степени изменения антропогенные ландшафты различаются: слабоизмененные — охотничьи угодья в тайге; измененные — выборочные рубки лесов, пашни малых поселений и тому подобное. К сильноизмененным относятся городские поселения, распашка и практическое уничтожение естественных степных ландшафтов, крупные разработки минеральных полезных ископаемых (Донбасс) и другие. Для охраны естественных ландшафтов создаются заповедники, заказники, принимаются меры защиты от загрязнения воздуха и вод. К антропогенным ландшафтам относятся также и улучшенные человеком ландшафты в виде парков, санитарной расчистки лесов, лесопосадок и другие. Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в окружающей среде . Основными источниками загрязнения нефтью являются: регламентные работы при обычных транспортных перевозках нефти, аварии при транспортировке и добычи нефти, промышленные и бытовые стоки.
Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод, - все это обуславливает присутствие постоянных полей загрязнения на трассах морских путей. Но утечки нефти могут происходить и на поверхности, в итоге нефтяное загрязнение обхватывает все области жизнедеятельности человека. Загрязнение влияет не только на окружающую нас среду, но и на наше здоровье. С такими быстрыми «разрушительными» темпами , вскоре все вокруг нас ,будет непригодно для использования : грязная вода будет сильнейшим ядом, воздух насыщен тяжелыми металлами, а овощи и вообще вся растительность будет исчезать из-за разрушения структуры почвы. Именно такое будущее ожидает нас по прогнозам ученых примерно через столетие, но тогда будет поздно что-либо предпринимать. Первый путь заключается в создании разного рода очистных сооружений, в применении малосернистого топлива, уничтожении и переработке мусора, строительстве дымовых труб высотой 200-300 м и более, рекультивации земель и др. Однако даже самые современные сооружения не обеспечивают полного очищения. А сверхвысокие дымовые трубы, снижая концентрацию вредных веществ в данном месте, способствуют распространению пылевого загрязнения и кислотных дождей на гораздо более обширные территории: труба высотой в 250 м увеличивает радиус рассеивания до 75 км. Второй путь состоит в разработке и применении принципиально новой природоохранительной ("чистой") технологии производства, в переходе к малоотходным и безотходным производственным процессам. Так, переход от прямоточного (река - предприятие - река) водоснабжения к оборотному и тем более к "сухой" технологии может обеспечить сначала частичное, а затем и полное прекращение сброса сточных вод в реки и водоемы. Этот путь является главным, поскольку он не просто уменьшает, а предупреждает загрязнение окружающей среды. Но он требует огромных расходов, непосильных для многих стран. Третий путь заключается в глубоко продуманном, наиболее рациональном размещении так называемых "грязных" производств, оказывающих отрицательное воздействие на состояние окружающей среды. К числу "грязных" производств, прежде всего, относятся химическая и нефтехимическая, металлургическая, целлюлозно-бумажная промышленность, тепловая энергетика, производство стройматериалов. При размещении таких предприятий особенно необходима географическая экспертиза. Еще один путь - повторное использование сырья. В развитых странах запасы вторичного сырья равны разведанным геологическим. Центры заготовок вторсырья - старопромышленные районы Зарубежной Европы, США, Японии, европейской части России.




Вопрос 36. Геологическая хронология. Относительная геохронология. Эволюция органического мира прошлого. Геохронологическая шкала (шкала геохронологического времени) и соответствующая ей стратиграфическая шкала (деление горных пород). Абсолютная геохронология. Абсолютный возраст Земли и древнейших пород.

ОТНОСИТЕЛЬНАЯ ГЕОХРОНОЛОГИЯ

Любое геологическое исследование всегда предполагает определение состава отложений, последовательности их образования и возраста. Все это нужно для того, чтобы максимально достоверно реконструировать историю геологического развития и показать те события, которые запечатлены в горных породах и которые происходили либо в одно и то же время, либо в разное, причем одни раньше, а другие позже. Термином стратиграфия (стратум - слой) обозначается одна из ветвей геологической науки, в задачу которой входят расчленение толщ осадочных и вулканогенных пород на отдельные слои и их пачки; описание содержащихся в них остатков фауны и флоры; установление возраста слоев; сопоставление выделенных слоев данного района с другими; составление сводного разреза отложений региона и разработка стратиграфической шкалы не только для отдельных регионов - региональных стратиграфических шкал, но и единой или международной стратиграфической шкалы для всей Земли. Для того чтобы решить эти задачи, необходимо установить не только относительный возраст пород, слагающих толщи и пачки слоев, но и их абсолютный возраст.

Любой разрез отложений в процессе изучения геологом должен быть расчленен на отдельные слои или их пачки, причем непосредственным наблюдением легче всего расчленять слои по литологическому признаку, т.е. по составу пород. Например, можно без особого труда выделить слои глин, известняков, песчаников, вулканических туфов и т.д. Сложнее разделять мощные толщи глин или песчаников, но и там основанием для выделения слоев или их пачек могут быть цвет, песчанистость глин, характер слоистости, содержание ископаемых фаунистических остатков и т.д. Иными словами, используются все более тонкие различия. При этом следует руководствоваться правилом, впервые сформулированным датским натуралистом Николаем Стеноном на рубеже XVII и XVIII вв. и заключающимся в признании того, что каждый вышележащий слой моложе подстилающего. Эта фундаментальная закономерность позволяет говорить о последовательности формирования слоев и тем самым об их относительном возрасте.

Кроме литологического метода расчленения разреза существует и палеонтологический, основанный на выделении слоев, содержащих различные комплексы органических остатков. Нередко можно наблюдать, что в разрезе повторяются литологически одинаковые слои, например, известняков, песчаников, но фауна и флора, встречающаяся в этих слоях, различна и не повторяется, отражая необратимую эволюцию органического мира. Она заключается в том, что какой-либо род или вид организмов никогда не может появиться вновь в позднейшее время точно таким же. Даже если условия обитания в более позднее время будут идентичны таковым, существовавшим ранее, все равно организмы не возвратятся к первоначальному облику. Это обстоятельство и делает возможным использование органических остатков для стратиграфического расчленения разреза. Необратимость эволюции органического мира позволяет сопоставлять и определять относительный возраст толщ пород, располагающихся далеко друг от друга и различающихся литологически. Этому способствует широкое площадное, но узкое вертикальное распространение отдельных организмов, которые называются руководящими ископаемыми формами. Ограниченный вертикальный интервал их существования объясняется способностью организмов очень быстро расселяться на обширных пространствах, и время этого расселения оказывается ничтожно малым по сравнению со скоростью накопления осадков. Руководящие ископаемые составляют лишь часть от общего количества организмов, встреченных в данном слое, и, как правило, характеризуются четкими особенностями формы, что позволяет их быстро и уверенно распознавать. Изменчивость форм организмов способствует тому, чтобы они стали руководящими ископаемыми. Однако и метод руководящих ископаемых следует применять с осторожностью, учитывая весь комплекс остатков фауны и флоры, встречающийся в исследуемом слое, так как несмотря на то что часть из них является транзитными - имеют широкое вертикальное распространение, сам комплекс органических остатков неповторим.

В последние десятилетия для расчленения и сопоставления разрезов стал широко применяться микропалеонтологический метод, объектом которого являются остатки известковых и кремнистых скелетов простейших организмов - фораминифер, радиолярий, остракод и др. Благодаря быстрой изменчивости этих организмов, их обилию и быстрому расселению в морях и океанах, появляется возможность детального расчленения разрезов отложений.

Очень важное значение приобрел и спорово-пыльцевой метод, основанный на изучении остатков спор и зерен пыльцы, которые чрезвычайно устойчивы и не разрушаются, разносясь ветром на большие расстояния в огромном количестве. Все это делает их незаменимыми при сопоставлении морских, континентальных и лагунных отложений, восстановлении палеогеографических условий, которые хорошо отражаются в изменении растительности, а следовательно, спор и пыльцы.

Рассмотренные палеонтологические методы применимы лишь к слоистым осадочным отложениям. Однако большие пространства на земном шаре сложены магматическими и метаморфическими породами, лишенными органических остатков. К ним этот метод неприменим.

В последние 20 лет большое значение для возрастного расчленения отложений, особенно в океанах и морях, приобрел палеомагнитный метод, основанный на способности горных пород сохранять характер намагниченности той эпохи, в которую они образовались.

По современным представлениям, магнитное поле Земли обусловлено конвективными токами вещества в ядре и мантии, вызывающими процессы подобно динамо-машине, генерирующей магнитное поле. По неясным пока причинам магнитное поле Земли через различные интервалы времени меняет свой знак, т.е. испытывает инверсию, и северный полюс меняется местами с южным. В настоящее время северный конец стрелки компаса направлен на север и наклонен вниз в Северном полушарии, что соответствует нормальной (прямой) полярности. Противоположное направление обозначает обратную (обращенную) полярность. Закрепляясь в горных породах, прямая и обратная полярность составляет сущность магнитостратиграфического метода расчленения отложений. Фиксируя в горных породах разного происхождения интервалы прямой и обратной намагниченности, мы получаем возможность провести стратиграфическую корреляцию отложений в глобальном масштабе.

На сегодняшний день разработана детальная магнитостратиграфическая шкала для кайнозойского и мезозойского периодов, а для палеозойского - лишь приблизительная. Для описания магнитных событий используются термины: интервал, субхроны, хроны и супер-хроны полярности, обозначающие различные отрезки времени, в течение которых существует прямая или обратная полярность магнитного поля (рис. 18.1). Магнитостратиграфический метод широко применяется в геологии и постоянно совершенствуется, приводя к созданию все более детальной шкалы (рис. 18.2).

Следует отметить, что палеомагнитный метод (но не магнитостратиграфический) чрезвычайно широко используется для определения перемещений литосферных плит в геологическом прошлом, так как по ориентировке вектора остаточной намагниченности можно реконструировать положение какой-либо плиты на сфере земного шара. Концепция тектоники литосферных плит во многом опирается именно на палеомагнитный метод.

В последние два десятилетия широкое распространение в целях корреляции пластов горных пород и их пачек получил геофизический метод отраженных волн общей глубинной точки (МОВ ОГТ), позволяющий на основе отражения сейсмических волн прослеживать пласты на глубинах до 10 км. Получив название сейсмостратиграфии, данный метод особенно активно используется в нефтяной геологии, так как дает возможность в относительно краткие сроки получить профили на очень большую территорию и выявить структуры и литологические отличия в пластах, благоприятные для появления скоплений нефти и газа.

ПЕРИОДИЗАЦИЯ ИСТОРИИ ЗЕМЛИ И МЕЖДУНАРОДНЫЕ ГЕОХРОНОЛОГИЧЕСКАЯ И СТРАТИГРАФИЧЕСКАЯ ШКАЛЫ

В геологии как в никакой другой науке важна последовательность установления событий, их хронологии, основанной на естественной периодизации геологической истории. Геологическая хронология, или геохронология, основана на выяснении геологической истории наиболее хорошо изученных регионов, например, в Центральной и Восточной Европе. На основе широких обобщений, сопоставления геологической истории различных регионов Земли, закономерностей эволюции органического мира в конце прошлого века на первых Международных геологических конгрессах была выработана и принята Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений, и эволюцию органического мира. Таким образом, международная геохронологическая шкала - это естественная периодизация истории Земли.

Среди геохронологических подразделений выделяются: эон, эра, период, эпоха, век, время. Каждому геохронологическому подразделению отвечает комплекс отложений, выделенный в соответствии с изменением органического мира и называемый стратиграфическим: эонотема, группа, система, отдел, ярус, зона. Следовательно, группа является стратиграфическим подразделением, а соответствующее ей временное геохронологическое подразделение представляет эра. Поэтому существуют две шкалы: геохронологическая и стратиграфическая. Первую мы используем, когда говорим об относительном времени в истории Земли, а вторую, когда имеем дело с отложениями, так как в каждом месте земного шара в любой промежуток времени происходили какие-то геологические события. Другое дело, что накопление осадков было неповсеместным. Геохронологическая шкала приведена в табл. 18.2.

Содержание шкалы с момента принятия менялось и уточнялось. В настоящее время выделяются три наиболее крупных стратиграфических подразделения - эонотемы: архейская, протерозойская и фанерозойская, которым в геохронологической шкале отвечают зоны различной длительности. Архейская и протерозойская эонотемы, охватывающие почти 80% времени существования Земли, выделяются в криптозой, так как в докембрийских образованиях полностью отсутствует скелетная фауна и палеонтологический метод к их расчленению неприменим. Поэтому разделение докембрийских образований базируется в первую очередь на общегеологических и радиометрических данных. Фанерозойский эон охватывает всего 570 млн. лет и расчленение соответствующей эонотемы отложений базируется на большом разнообразии многочисленной скелетной фауны. Фанерозойская эонотема подразделяется на три группы: палеозойскую, мезозойскую и кайнозойскую, отвечающие крупным этапам естественной геологической истории Земли, рубежи которых отмечены достаточно резкими изменениями органического мира.

Названия эонотем и групп происходят от греческих слов: "археос" - самый древний, древнейший; "протерос" - первичный; "палеос" - древний; "мезос" - средний; "кайнос" - новый. Слово "криптос" означает скрытый, а "фанерозой" - явный, прозрачный, так как появилась скелетная фауна. Слово "зой" происходит от "зоикос" - жизненный. Следовательно, "кайнозойская эра" означает эру новой жизни и т.д. Группы подразделяются на системы, отложения которых сформировались в течение одного периода и характеризуются только им свойственными семействами или родами организмов, а если это растения, то родами и видами. Системы были выделены в различных регионах и в разное время, начиная с 1822 г. В настоящее время выделяются 12 систем, названия большей части которых происходят от тех мест, где они впервые были описаны. Например, юрская система- от Юрских гор в Швейцарии, пермская - от Пермской губернии в России, меловая - по наиболее характерным породам - белому писчему мелу и т.д. Четвертичную систему нередко именуют антропогеновой, так как именно в этом возрастном интервале появляется человек. Системы подразделяются на два или три отдела, которым соответствуют ранняя, средняя, поздняя эпохи. Отделы, в свою очередь, разделяются на ярусы, которые характеризуются присутствием определенных родов и видов ископаемой фауны. И, наконец, ярусы подразделяются на зоны, являющиеся наиболее дробной частью международной стратиграфической шкалы, которой в геохронологической шкале соответствует время. Названия ярусов даются обычно по географическим названиям районов, где этот ярус был выделен; например, алданский, башкирский, маастрихтский ярусы и т.д. В то же время зона обозначается по наиболее характерному виду ископаемой фауны. Зона охватывает, как правило, только определенную часть региона и развита на меньшей площади, нежели отложения яруса.

 

Всем подразделениям стратиграфической шкалы соответствуют геологические разрезы, в которых эти подразделения были впервые выделены. Поэтому такие разрезы являются эталонными, типичными и называются стратотипами, в которых содержится только им свойственный комплекс органических остатков, определяющий стратиграфический объем данного стратотипа.

Определение относительного возраста каких-либо слоев и заключается в том, что мы сравниваем обнаруженный нами комплекс органических остатков в изучаемых слоях с комплексом ископаемых в стратотипе соответствующего подразделения международной геохронологической шкалы, т.е. мы, определяем возраст отложений относительно стратотипа. Именно поэтому палеонтологический метод, несмотря на присущие ему недостатки остается наиболее важным методом определения геологического возраста горных пород. Определение относительного возраста, например, девонских отложений свидетельствует лишь о том, что эти отложения моложе силурийских, но древнее каменноугольных. Однако мы не можем установить длительность формирования девонских отложений и дать заключение о том, когда (в абсолютном летоисчислении) произошло накопление этих отложений. Только методы абсолютной геохронологии способны ответить на этот вопрос.

ПЕРИОДИЗАЦИЯ ИСТОРИИ ЗЕМЛИ И МЕЖДУНАРОДНЫЕ ГЕОХРОНОЛОГИЧЕСКАЯ И СТРАТИГРАФИЧЕСКАЯ ШКАЛЫ

В геологии как в никакой другой науке важна последовательность установления событий, их хронологии, основанной на естественной периодизации геологической истории. Геологическая хронология, или геохронология, основана на выяснении геологической истории наиболее хорошо изученных регионов, например, в Центральной и Восточной Европе. На основе широких обобщений, сопоставления геологической истории различных регионов Земли, закономерностей эволюции органического мира в конце прошлого века на первых Международных геологических конгрессах была выработана и принята Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений, и эволюцию органического мира. Таким образом, международная геохронологическая шкала - это естественная периодизация истории Земли.

Среди геохронологических подразделений выделяются: эон, эра, период, эпоха, век, время. Каждому геохронологическому подразделению отвечает комплекс отложений, выделенный в соответствии с изменением органического мира и называемый стратиграфическим: эонотема, группа, система, отдел, ярус, зона. Следовательно, группа является стратиграфическим подразделением, а соответствующее ей временное геохронологическое подразделение представляет эра. Поэтому существуют две шкалы: геохронологическая и стратиграфическая. Первую мы используем, когда говорим об относительном времени в истории Земли, а вторую, когда имеем дело с отложениями, так как в каждом месте земного шара в любой промежуток времени происходили какие-то геологические события. Другое дело, что накопление осадков было неповсеместным. Геохронологическая шкала приведена в табл. 18.2.

Содержание шкалы с момента принятия менялось и уточнялось. В настоящее время выделяются три наиболее крупных стратиграфических подразделения - эонотемы: архейская, протерозойская и фанерозойская, которым в геохронологической шкале отвечают зоны различной длительности. Архейская и протерозойская эонотемы, охватывающие почти 80% времени существования Земли, выделяются в криптозой, так как в докембрийских образованиях полностью отсутствует скелетная фауна и палеонтологический метод к их расчленению неприменим. Поэтому разделение докембрийских образований базируется в первую очередь на общегеологических и радиометрических данных. Фанерозойский эон охватывает всего 570 млн. лет и расчленение соответствующей эонотемы отложений базируется на большом разнообразии многочисленной скелетной фауны. Фанерозойская эонотема подразделяется на три группы: палеозойскую, мезозойскую и кайнозойскую, отвечающие крупным этапам естественной геологической истории Земли, рубежи которых отмечены достаточно резкими изменениями органического мира.

Названия эонотем и групп происходят от греческих слов: "археос" - самый древний, древнейший; "протерос" - первичный; "палеос" - древний; "мезос" - средний; "кайнос" - новый. Слово "криптос" означает скрытый, а "фанерозой" - явный, прозрачный, так как появилась скелетная фауна. Слово "зой" происходит от "зоикос" - жизненный. Следовательно, "кайнозойская эра" означает эру новой жизни и т.д. Группы подразделяются на системы, отложения которых сформировались в течение одного периода и характеризуются только им свойственными семействами или родами организмов, а если это растения, то родами и видами. Системы были выделены в различных регионах и в разное время, начиная с 1822 г. В настоящее время выделяются 12 систем, названия большей части которых происходят от тех мест, где они впервые были описаны. Например, юрская система- от Юрских гор в Швейцарии, пермская - от Пермской губернии в России, меловая - по наиболее характерным породам - белому писчему мелу и т.д. Четвертичную систему нередко именуют антропогеновой, так как именно в этом возрастном интервале появляется человек. Системы подразделяются на два или три отдела, которым соответствуют ранняя, средняя, поздняя эпохи. Отделы, в свою очередь, разделяются на ярусы, которые характеризуются присутствием определенных родов и видов ископаемой фауны. И, наконец, ярусы подразделяются на зоны, являющиеся наиболее дробной частью международной стратиграфической шкалы, которой в геохронологической шкале соответствует время. Названия ярусов даются обычно по географическим названиям районов, где этот ярус был выделен; например, алданский, башкирский, маастрихтский ярусы и т.д. В то же время зона обозначается по наиболее характерному виду ископаемой фауны. Зона охватывает, как правило, только определенную часть региона и развита на меньшей площади, нежели отложения яруса.

Всем подразделениям стратиграфической шкалы соответствуют геологические разрезы, в которых эти подразделения были впервые выделены. Поэтому такие разрезы являются эталонными, типичными и называются стратотипами, в которых содержится только им свойственный комплекс органических остатков, определяющий стратиграфический объем данного стратотипа.

Определение относительного возраста каких-либо слоев и заключается в том, что мы сравниваем обнаруженный нами комплекс органических остатков в изучаемых слоях с комплексом ископаемых в стратотипе соответствующего подразделения международной геохронологической шкалы, т.е. мы, определяем возраст отложений относительно стратотипа. Именно поэтому палеонтологический метод, несмотря на присущие ему недостатки остается наиболее важным методом определения геологического возраста горных пород. Определение относительного возраста, например, девонских отложений свидетельствует лишь о том, что эти отложения моложе силурийских, но древнее каменноугольных. Однако мы не можем установить длительность формирования девонских отложений и дать заключение о том, когда (в абсолютном летоисчислении) произошло накопление этих отложений. Только методы абсолютной геохронологии способны ответить на этот вопрос.

ИСТОРИЯ РАЗВИТИЯ ЗЕМНОЙ КОРЫ

Рассматривать геологическую историю нашей планеты можно только с того времени, с которого сохранились наиболее древние свидетели этой истории - горные породы и минералы. Однако первым древнейшим этапом образования Земли следует считать интервал времени, в течение которого она сформировалась как одна из планет Солнечной системы, т.е. это время аккреции вещества газопылевой туманности, которое, по мнению исследователей, не было продолжительным и, по-видимому, составляло не более 100 млн. лет (рис. 18.9).

Второй древнейший этап часто именуют догеологическим, так как горных пород этого времени практически не сохранилось, а процессы, протекавшие на данном этапе, приводили к дифференциации вещества внутри планеты, образованию какой-то первичной земной коры основного состава, выделению внешнего, жидкого ядра Земли и, соответственно, появлению магнитного поля. Вероятнее всего, что в это время энергично проявлялась метеоритная бомбардировка Земли, а ее поверхность напоминала современную Луну или скорее Венеру, учитывая, что существовала бескислородная атмосфера, облака которой плотной пеленой закрывали Землю.

Начиная с рубежа примерно в 4,0-3,5 млрд. лет назад начинается третий этап, который в целом может быть назван докембрийским, а его верхний рубеж был приурочен к границе среднего позднего рифея, т.е. примерно 1 млрд. лет назад. Дело в том, что в позднем рифее начался распад гигантского материка Пангея-1 и заложились все основные подвижные пояса, в дальнейшем развивавшиеся в фанерозое. Длительность докембрийского этапа очень велика - около 3 млрд. лет, и в самом общем виде в нем выделяется ряд крупных стадий: 1) древнеархейская, или катархейская (4,0-3,5 млрд. лет); 2) архейская (3,5-2,6 млрд. лет); 3) раннепротерозойская (2,6-1,65 млрд. лет) и 4) позднепротерозойская (1,65-1,0 млрд. лет) вплоть до позднего рифея. Все эти стадии различались структурным планом земной поверхности, палеогеографической и палеогеодинамической обстановками, палеоклиматическими условиями. Переход от криптозоя к фанерозою ознаменовался бурным расцветом органической жизни, но уже в венде, т.е. в конце позднего протерозоя, в изобилии появляется бесскелетная фауна.

 

В позднем рифее произошел распад Пангеи-1 на Гондвану и Лавразию - два гигантских материка, а в венде начала распадаться и Лавразия и именно в это время заложились главные подвижные пояса.

Рассмотрение геологической истории Земли в фанерозойском зоне можно вести по эрам: палеозойской, мезозойской и кайнозойской. Однако естественные историко-геологические этапы несколько отличаются от рубежей указанных эр и будет логичнее проанализировать историю именно по этапам, а не по эрам. В фанерозойской истории выделяется целый ряд гораздо менее продолжительных этапов, чем в докембрийской истории. Каждый из них начинался с раскрытия океанов, а заканчивался сближением литосферных плит, закрытием океанов и складчатостью накопившихся осадочных и магматических пород. Выделяются: 1) раннепалеозойский (каледонский) этап, начавшийся в позднем рифее или венде и закончившийся складчатостью в силурийский период; 2) позднепалеозойский (герцинский) этап - девон-пермь, иногда захватывающий и ранний триас; 3) мезозойский (киммерийский) этап - триас (местами захватывает и конец позднего палеозоя) - юра со складчатостью в середине юры; 4) мезозойско-кайнозойский (альпийский) этап, начавшийся в ранней юре и закончившийся складчатостью в неогене. Не во всех районах Земли эти этапы начинались и заканчивались одновременно, но в целом последовательность примерно такая, как показано выше.










Последнее изменение этой страницы: 2018-04-12; просмотров: 342.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...