Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос 17. Разрывные дислокации (нарушения ) горных пород. Разрывные нарушения без смещения – трещины. Разрывные нарушения со смещением. Классификации разных нарушений.




Разрывным нарушением называется деформация пластов горных пород с нарушением их сплошности, возникающая в случае превышения предела прочности пород тектоническими напряжениями. Тектонические разрывы, как и складки, необычайно разнообразны по своей форме, размерам, величине смещения и другим параметрам. В разрывном нарушении, как и в складке, различают его элементы. Рассмотрим их более подробно (рис. 14.9).

Рис. 14.9. Элементы сброса: I- поднятое (лежачее) крыло; II- опущенное (висячее) крыло; III- сместитель (сбрасыватель). Амплитуды: 1- по сместителю, 2- стратиграфическая, 3- вертикальная, 4- горизонтальная

В любом разрывном нарушении всегда выделяются плоскость разрыва или сместителя и крылья разрыва, т.е. два блока пород по обе стороны сместителя, которые подверглись перемещению. Крыло или блок, находящийся выше сместителя, называется висячим, а ниже- лежачим. Важным параметром разрыва является его амплитуда. Расстояние от пласта (его подошвы или кровли) в лежачем крыле до этого же пласта (его подошвы или кровли) в висячем крыле называется амплитудой по сместителю. Кроме того, различают стратиграфическую амплитуду, которая измеряется по нормали к плоскости напластования в любом крыле разрыва до проекции пласта; вертикальную амплитуду-проекцию амплитуды по сместителю на вертикальную плоскость; горизонтальную амплитуду - проекцию амплитуды по сместителю на горизонтальную плоскость.

Положение сместителя в пространстве определяется, как и ориентировка любой другой плоскости, с помощью линий падения, простирания и угла падения.

Основные типы тектонических разрывов. Среди различных типов разрывных нарушений можно выделить главные: сброс-сместитель вертикален или наклонен в сторону опущенного крыла (рис. 14.10). Угол падения сброса может быть разным, но чаще всего составляет от 40 до 60 o. Сбросы образуются в условиях тектонического растяжения. Взброс - сместитель наклонен в сторону поднятого крыла с углами больше 45 o. Надвиг - тот же взброс, но угол падения сместителя пологий, обычно меньше 45 o. Следует отметить, что это подразделение условное. Надвиги и взбросы образуются в условиях тектонического сжатия, и поэтому их формирование сопровождает процессы складчатости. Сдвиг - разрыв с перемещением крыльев по простиранию сместителя. Как правило, сместитель у сдвигов ориентирован близко к вертикальному положению. Различают правые и левые сдвиги. Правым сдвигом называют разрыв, у которого крыло за сместителем, по отношению к наблюдателю, смещается вправо и, наоборот, при левом сдвиге дальнее крыло смещается влево. Раздвиг - разрыв с перемещением крыльев перпендикулярно сместителю. При раздвигах обычно образуется зияние между крыльями.

Рис. 14.10. Типы разрывов: I- сброс; II- взброс; III- надвиг; IV- сдвиг правый (план); V- покров и его элементы; 1- сместитель, 2- аллохтон, 3- автохтон, 4- фронт покрова, 5- тектонический останец, 6- тектоническое окно, 7- дигитация, 8- параавтохтон, 9- корень покрова

Покров, или шарьяж,- разрыв с почти горизонтальным положением сместителя. У покрова различают собственно тело покрова, или аллохтон, т.е. ту его часть, которая перемещается; автохтон- породы, подстилающие покров. В самом теле покрова - аллохтоне- выделяют фронт покрова и корень покрова - место, откуда происходит его перемещение. Если аллохтон расчленяется эрозией таким образом, что обнажаются породы автохтона, то их выход на дневную поверхность называется тектоническим окном. Если от фронтальной части аллохтона эрозией отделены его блоки, то они именуются тектоническими останцами. Сместитель в покрове часто называют поверхностью срыва или волочения.

Нередко аллохтон сам подвергается распаду, расщеплению на покровы или пластины меньшего размера - дигитации. В том случае, когда движение аллохтона приводит к срыву и некоторому перемещению отдельных толщ автохтона, но они при этом не утрачивают связи С подстилающей толщей, говорят о параавтохтоне ("пара" - близко, возле). Образование покровов нередко происходит в подводных условиях. Фронтальная часть покрова разрушается, и формируется олистострома, состоящая из отдельных глыб разного размера - олистолитов, заключенных в матриксе из осадочных пород. Крупные оползшие части пластов называются олистоплаками.

Покровы, или шарьяжи,- важные структурные элементы земной коры и, как сейчас выясняется, не только ее самой верхней части. Покровные тектонические нарушения могут образовываться различными путями: в процессе складчатости, т.е. быть синскладчатыми, образуясь на подвернутых крыльях лежачих складок или в результате поддвига под складчатое сооружение жесткого блока, массива и т. д. Они могут быть и доскладчатыми, а затем сминаться в складки или формироваться после складчатости. В настоящее время известны покровы с доказанной амплитудой более 200 км. Так, Скандинавские каледонские складчатые сооружения надвинуты на метаморфические докембрийские породы Балтийского щита на 150-200 км, и последние обнажаются в ряде тектонических окон. Кристаллические породы Аппалачских гор по горизонтальной поверхности надвинуты на неметаморфизованные нижнепалеозойские толщи более чем на 200 км. В Скалистых горах США в штате Вайоминг установлен надвиг, уходящий под углом около 40o до глубины в 24 км.

Тектоническое раздробление аллохтона по его сместителю - поверхности срыва - приводит к формированию тектонической брекчии или смеси - меланжа, состоящего из перетертых, сдавленных обломков, как аллохтона, так и автохтона со следами тектонических перемещений. Часто меланж образуется в офиолитовой ассоциации, что значительно облегчается увеличением объема ультраосновных пород при их серпентинизации, которые действуют как "смазка", улучшающая скольжение обломков относительно друг друга. Следует заметить, что олистострома может сформироваться за счет меланжа и, наоборот, меланж может развиваться по олистостроме.

Строение поверхности сместителя может быть разным. В простейших случаях он представлен плоскостью, по которой происходит смещение пород. Нередко на такой плоскости развиваются так называемые зеркала скольжения или трения - блестящие, как бы отполированные поверхности с бороздами и уступчиками отрыва, указывающие направление перемещения. Бороздки возникают в том случае, если в плоскость разрыва попадают мелкие обломки пород, которые, вдавливаясь, оставляют на плоскости царапину, бороздку, исчезающую, когда обломок разрушится. В более крупных разрывах в зоне сместителя образуются брекчии трения или милониты (греч. "милоc"-мельница), представляющие собой перетертые обломки пород крыльев. Как правило, благодаря проницаемости для растворов милониты ожелезнены, окремнены, по ним развивается кальцит и т.д. Мощность милонитов может быть разной: от первых сантиметров до многих сотен метров.

Вопрос 18. Землетрясение. Землетрясение как отражение интенсивных тектонических движений земной коры и разрядки напряжений. Катастрафические землетрясений  в России и других странах. Географическое распространение землетрясений и их тектоническая позиция. Понятие об эпицентре и гипоцентре землетрясений. Упругие ( сейсмические ) волны, их типы и скорость распространения.

Ежегодно на земном шаре регистрируется более 100 000 землетрясений. Большинство из них мы вообще не ощущаем, некоторые отзываются лишь дребезжанием посуды в шкафах и раскачиванием люстр, зато другие, к счастью гораздо более редкие, в мгновение ока превращают города в груды дымящихся обломков. На побережьях море отступает, обнажая дно, а затем на берег обрушивается гигантская волна, сметая все на своем пути, унося остатки строений в море. Крупные землетрясения сопровождаются многочисленными жертвами среди населения, которое гибнет под развалинами зданий, от пожаров, наконец, просто от возникающей паники. Землетрясение-это бедствие, катастрофа, поэтому огромные усилия затрачиваются на предсказания возможных сейсмических толчков, на выделение сейсмоопасных районов, на мероприятия, призванные сделать промышленные и гражданские здания сейсмостойкими, что ведет к большим дополнительным затратам в строительстве.

За последнее время катастрофические землетрясения произошли в Чили (1960), на Аляске (1969), в Гватемале (1976), в Китае (1976). На территории СССР не раз отмечались очень сильные землетрясения: Андижанское (1902), Кеминское (1911), Хаитское (1949), Ашхабадское (1929 и 1948), Муйское (1957), Ташкентское (1966), Газлийские, Дагестанское (1970, 1976, 1984) и, наконец, страшное Спитакское землетрясение в Армении (1988).

Любое землетрясение-это тектонические деформации земной коры или верхней мантии, происходящие вследствие того, что накопившиеся напряжения в какой-то момент превысили прочность горных пород в данном месте. Разрядка этих напряжений и вызывает сейсмические колебания в виде волн, которые, достигнув земной поверхности, производят разрушения. "Спусковой крючок", вызывающий разрядку напряжений, может быть, на первый взгляд, самым незначительным, например заполнение водохранилища, быстрое изменение атмосферного давления, океанские приливы и т.д. Описывая землетрясения, пользуются некоторыми терминами, которые необходимо знать.

Гипоцентр, или очаг,-определенный объем горных пород, внутри которого осуществляются неупругие деформации и происходят разрушения пород (рис. 15.1). Понятие очага, или гипоцентра не является строгим, но важно подчеркнуть, что это не точка, а некоторое пространство, объем, формы и размеры которого могут быть самыми различными.

Рис. 15.1. Очаг и изосейсты землетрясения: 1- очаг (гипоцентр), 2- эпицентр, 3- изосейсты, 4- плейстосейстовая область, 8, 7, 6, 5- зоны балльности

Эпицентр-проекция гипоцентра на земную поверхность, поэтому следует иметь в виду, что нередко карты распределения эпицентров создают не совсем правильную картину связи землетрясений с поверхностной геологической структурой, особенно в случае наклонных разрывов типа надвигов с гипоцентром на большой глубине. Это обстоятельство подчеркивается для соблюдения осторожности при интерпретации землетрясений от особенностей геологического строения региона.

Интенсивность-это внешний эффект землетрясения на поверхности Земли, который выражается в определенном смещении почвы, частиц горных пород, степени разрушения зданий, появлении трещин на поверхности и т.д. В настоящее время в СССР используется шкала интенсивности землетрясений "MSK-64", названная так по заглавным буквам фамилий авторов: С.В. Медведев (СССР), В. Шпонхойер (ГДР), В. Карник (ЧССР).

Шкала удобна, ею легко пользоваться, а интенсивность землетрясений измеряется в баллах от 1 до 12. По этой шкале Кеминское землетрясение в 1911 г. на Тянь-Шане оценивалось в 11-12 баллов, Ашхабадское 1948 г.-в 10, Спитакское 1988 г.-в 7-10, Ташкентское 1966 г.-8 баллов и т.д. Изосейсты-линии, соединяющие точки (пункты на местности), в которых землетрясение проявилось с одинаковой интенсивностью. Плейстосейстовая область-место на поверхности Земли, располагающееся непосредственно над гипоцентром, или очагом землетрясения, т.е. это как бы проекция очага на поверхность. Естественно, что интенсивность землетрясения уменьшается в сторону от плейстосейстовой области, однако это уменьшение зависит от многих факторов: формы и глубины очага, геологической структуры, состава и степени метаморфизма горных пород, уровня залегания грунтовых вод и т.д. Поэтому изосейсты на поверхности могут иметь самые причудливые очертания, а отнюдь не правильные круги.

Магнитуда (М)-логарифм отношения максимального смещения частиц грунта (в микрометрах) А1 при данном конкретном землетрясении к некоторому эталонному очень слабому смещению грунта A2:

                                                                        

Магнитуда-это безразмерная величина, и она была предложена в 1935 г. американским геофизиком Ч. Рихтером. Шкала, созданная им, широко используется в сейсмологии и изменяется от 0 до 8,8 при самых сильных катастрофических землетрясениях. Магнитуда отличается от интенсивности. Так, например, Ташкентское землетрясение 1966 г. было силой в 8 баллов, М-5,3; Ашхабадское 1948 г.-10 баллов, М-7,3.

Энергия (Е) землетрясений-это та величина потенциальной энергии, которая освобождается в виде кинетической после разрядки напряжения в очаге и, достигая поверхности Земли, вызывает ее колебания. Распространяется энергия в виде упругих сейсмических волн. Энергия землетрясения вычисляется в джоулях. Формула Б.Б. Голицына, известного русского сейсмолога, для вычисления энергии землетрясений выглядит следующим образом:

                                                                        

 где V - скорость распространения сейсмических волн, - плотность горных пород, а - амплитуда смещения, Т- период колебаний. Выделяющаяся при землетрясениях энергия изменяется в очень широких пределах. Так, для Аляскинского землетрясения 1964 г. с магнитудой 8,5 энергия равнялась 1018 Дж (1 Дж = 107 эрг), т.е. была эквивалентна, по Н.И. Николаеву, силе взрыва 100 ядерных бомб по 100 мегатонн каждая. Это колоссальное количество энергии, выделившееся практически мгновенно. Таким образом, образующаяся при крупных землетрясениях энергия в миллион раз превышает энергию "самой маленькой" атомной бомбы, сброшенной на Хиросиму 6 августа 1945 г.

Часть выделившейся энергии, помимо формирования сейсмических волн, расходуется на преодоление сил трения в очаге, на пластические деформации, наконец, на выделение тепла, которое может быть весьма значительным. Ввиду большой изменчивости энергии нередко используют ее логарифм К = lgE на расстоянии 10 км от гипоцентра. Величина К называется энергетическим классом землетрясения и, будучи выражена в джоулях, меняется от 0 до 18. Существует определенная зависимость между энергетическим классом и магнитудой землетрясений:

К        9        10      11      12      13      14      15      16

М       3,1     3,7     4,4     5,0     5,6     6,2     7,0     7,5

Глубиной очага землетрясений (h) называется расстояние от поверхности Земли по нормали до гипоцентра, или очага. Существуют разнообразные методы определения глубины залегания очагов. Один из таких методов был предложен С. В. Медведевым                                                                         

                                                  

 где Image36.gif (883 bytes)- площадь, ограниченная п-ой изосейстой, - площадь, ограниченная следующей изосейстой по радиусу от эпицентра.

Глубины, определенные этим способом, дают, конечно, лишь приблизительную величину и должны уточняться другими методами.

Глубины очагов землетрясений могут быть очень разными-от первых километров до 600-700 км в сейсмофокальных зонах Беньофа. Однако подавляющее количество землетрясений (около 90 %) приурочено к интервалу до 100-200 км. Гипоцентры Крымских землетрясений располагаются между 15 и 30 км, хотя есть и более глубокие; на Кавказе-в пределах верхней части земной коры, но в отдельных случаях превышает 100 км; в районе Курильской островной дуги, начиная от приостровного склона глубоководного желоба к западу прослеживается наклонная сейсмофокальиая зона, относительно пологая до глубины 300 км, а далее более крутая. Основная масса гипоцентров сосредоточивается в интервале до 100 км, а далее вглубь их зарегистрировано гораздо меньше, причем отдельные очаговые группы разделены асейсмическими участками. Наиболее глубокие очаги зафиксированы на глубинах 600-650 км, где энергетический класс землетрясений заметно слабеет.

Механизм возникновения землетрясений, т.е. механизм возникновения очага, весьма сложен и трактуется неоднозначно. В настоящее время считается установленным, что основные параметры землетрясения, его магнитуда и энергия зависят от размеров очага, а не от накопившихся напряжений и деформаций. Была выдвинута идея "вспарывания" тектонического (сейсмического) разрыва. В каком-то месте этого разрыва происходит накапливание напряжений. Когда они превышают предел прочности горных пород в данном месте, разрыв "взрезается", "вспарывается" и распространяется на определенную длину с большой скоростью, достигающей 3 - 4 км/с. Именно с такими скоростями происходит разрушение пород в очаге землетрясений.

Существует несколько моделей очага землетрясений. Н.В. Шебалиным предложена модель очага, заключающаяся в установлении решающей роли осложнений вдоль главного сейсмогенного разрыва в образовании сейсмических волн. Вдоль плоскости основного сейсмогенного разрыва имеются "гладкие" участки и участки с "зацепами", которые препятствуют смещению. Срыв "зацепа"- процесс мгновенный, необратимый и именно он приводит к возникновению короткопериодических сильных колебаний. Молодые сейсмогенные разломы обладают большим количеством "зацепов" и потому представляют собой более значительную сейсмическую опасность, чем древние разломы, в которых "зацепы" срезаны и преобладают гладкие участки.

Модель лавинно-неустойчивого трещинообразования разработана В.И. Мячкиным и другими сейсмологами (рис. 15.2). Смысл ее в том, что нарастающие напряжения приводят к образованию также нарастающего числа и размеров трещин в каком-то объеме горной породы. В дальнейшем интервалы между трещинами сокращаются и их число начинает расти, как лавина, со все большим ускорением. Поле напряжений в очаговой области приобретает неоднородность, возрастает скорость деформаций, а процесс трещинообразования концентрируется в узкой зоне, где они объединяются в один главный разрыв, по которому и происходит разрядка накопившихся напряжений, т.е. возникают сейсмические колебания и происходит землетрясение.

Рис. 15.2. Изменение физических параметров по модели лавинно-неустойчивого трещинообразования (по В.И. Мячкину и др.) I, II, III, IV- стадии развития разрушения, 1- деформация, 2- скорости сейсмических волн, 3- среднее значение общей площади поверхности трещин, 4- пористость, радоновая эмиссия.

Весь этот процесс "подготовки" до заключительной стадии слияния трещин может продолжаться тысячи лет, а перед землетрясением он резко ускоряется. Не останавливаясь на других моделях очаговой зоны, следует отметить, что землетрясение - это весьма сложный геологический процесс и сводить его к какой-то одной простой модели хотя и удобно, но вряд ли правильно.

. Землетрясения как отражение интенсивных тектонических движений земной коры и разрядки напряжений. Катастрофические землетрясения в России и в других странах. Географическое распространение землетрясений и их тектоническая позиция. Понятие об эпицентре и гипоцентре землетрясений. Упругие (сейсмические) волны, их типы и скорость распространения. Сейсмические станции и сейсмографы. Глубины очагов землетрясений. Шкалы для оценки интенсивности землетрясений в баллах. Изосейсты и плейстосейстовая область. Энергия, магнитуда и энергетический класс землетрясений. Частота землетрясений. Геологическая обстановка возникновения землетрясений. Сейсмофокальные зоны Беньофа. Сейсмическое районирование и его практическое значение. Строительство сейсмостойких зданий и сооружений. Проблема прогноза землетрясений.

Волны первого типа называются продольными (либо волнами сжатия или растяжения) или P-волнами (ppima) - при землетрясениях и взрывах они приходят первыми. Волны второго типа, приходящие позже, называются поперечны ми или S-волнами (sekonda). P-волна распространяется со скоростью Vp=√(λ+2μ)/ρ, а S-волна -со скоростью Vs=√μ/ρ, где λ и µ - упругие постоянные среды, а p - ее плотность. Максимальная скорость поперечной волны в твердой среде Vs = 0,7Vp, а в жидкостях и газах S-волна не распространяется вообще. По свободной поверхности среды могут распространяться еще и поверхностные волны двух типов. Одни смещают среду в вертикальной плоскости, другие - в горизонтальной (волны с вертикальной и с горизонтальной поляризацией). Характерный пример волны первого типа - волна Рэлея, которая движется со скоростью CR ≈ 0,9Vs. По границе раздела двух твердых сред - полупространства и сравнительно тонкого слоя - может идти поперечная, чисто сдвиговая волна Лява. А когда на такую границу падает S- или P-волна, возникают сразу четыре волны - две отраженные и две преломленные, которые обозначаются как PP, SS и так далее. Если же при отражении или преломлении на границе волна меняет тип, ее называют обменной. Упругие P- и S-волны успешно используются при анализе землетрясений, для геофизических исследований, поиска полезных ископаемых (в первую очередь нефти и газа), в физике твердого тела. А ночной хищник - скорпион миллионы лет назад "научился" с их помощью охотиться за добычей.

Вопрос 19. Земная кора. Основные черты рельефа земной поверхности как отражение строения земной коры. Основные слои земной коры, установленные сейсмическими методами. Типы земной коры. Расслоенность земной коры. Типы сочленения континентальной коры с океанической.

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Следовательно, эти структурные элементы должны пониматься в геологическом, вернее даже в геофизическом смысле, так как определить тип строения земной коры возможно только сейсмическими методами. Отсюда ясно, что не все пространство, занятое водами океана, представляет собой в геофизическом смысле океанскую структуру, так как обширные шельфовые области, например в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а местами и тектоносферу, т.е. прослеживаются до глубин примерно в 700 км.

В пределах океанов и континентов выделяются менее крупные структурные элементы, во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океинские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга, т.е. расширения океанского дна и наращивания новообразованной океанской коры. Следовательно, в океанах как структурах выделяются устойчивые платформы (плиты) и мобильные срединно-океанские пояса.

 

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.

На территории некоторых континентов, в зоне перехода континент-океан (в геофизическом смысле) находятся окраинно-континентальные, по терминологии В.Е. Хаина, подвижные геосинклинальные пояса, представляющие собой сложное сочетание окраинных морей, островных дуг и глубоководных желобов. Это пояса высокой современной тектонической активности, контрастности движений, сейсмичности и вулканизма. В геологическом прошлом функционировали и межконтинентальные геосинклинальные пояса, например Урало-Охотский, связанный с древним палео-Азиатским океанским бассейном, и др.

Учение о геосинклиналях в 1973 г. отметило свое столетие с того времени, как американский геолог Д. Дэна ввел это понятие в геологию, а еще раньше, в 1857 г., также американец Дж. Холл сформулировал в целом эту концепцию, показав, что горно-складчатые структуры возникли на месте прогибов, ранее выполнявшихся разнообразными морскими отложениями. В силу того, что общая форма этих прогибов была синклинальной, а масштабы прогибов очень большими, их и назвали геосинклиналями.

За прошедшее столетие учение о геосинклиналях набирало силу, разрабатывалось, детализировалось и благодаря усилиям большой армии геологов различных стран сформировалось в стройную концепцию, представляющую собой эмпирическое обобщение огромного фактического материала, но страдавшую одним существенным недостатком: оно не давало, как совершенно справедливо полагает В.Е. Хаин, геодинамической интерпретации наблюдаемых конкретных закономерностей развития отдельных геосинклиналей. Устранить этот недостаток в настоящее время способна концепция тектоники литосферных плит, возникшая всего лишь 25 лет назад, но быстро превратившаяся в ведущую геотектоническую теорию. С точки зрения этой теории геосинклинальные пояса возникают на границах взаимодействия различных литосферных плит. Рассмотрим основные структурные элементы земной коры более подробно.

Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранитогнейсовых куполов или овалов - специфической формой метаморфогенной складчатости (рис. 16.1). Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40 % и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов). Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены. Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи-1, возникшего в конце раннего протерозоя.

Рис. 16.1. Схема строения платформы: I- фундамент; II- чехол; 1- щит, 2- синеклиза, 3- антеклиза, 4- свод, 5- впадина, 6- авлакоген, 7- перикратонный прогиб, 8- передовой прогиб, 9- складчатая область

Верхний этаж платформ представлен чехлом, или покровом, полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает самое важное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникают грабены, грабенообразные прогибы - авлакогены (от греч. "авлос" - борозда, ров; "ген" - рожденный, т.е. рожденные рвом), как их впервые назвал Н.С. Шатский. Авлакогены чаще всего формировались в позднем протерозое (рифее) и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового магматизма с континентальными толеитовыми базальтами, силлами и дайками. Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений, чаще всего начинающимся с вендского времени.

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом.

По краям платформ, там, где они граничат со складчатыми поясами, часто образуются глубокие впадины, называемые перикратонными (т.е. на краю кратона, или платформы). Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Последние возникают над зонами глубоких разломов, крылья которых испытывают разнонаправленные движения и в чехле платформы выражены узкими выходами древних отложений чехла из-под более молодых. Углы наклона крыльев валов не превышают первых градусов. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков. Все платформенные структуры очень пологие и в большинстве случаев непосредственно измерить наклоны их крыльев невозможно.

Состав отложений платформенного чехла разнообразный, но чаще всего преобладают осадочные породы - морские и континентальные, образующие выдержанные пласты и толщи на большой площади. Весьма характерны карбонатные формации, например, белого писчего мела, органогенных известняков, типичных для гумидного климата и доломитов с сульфатными осадками, образующимися в аридных климатических условиях. Широко развиты континентальные обломочные формации, приуроченные, как правило, к основанию крупных комплексов, отвечающих определенным этапам развития платформенного чехла. На смену им нередко приходят эвапоритовые или угленосные паралические формации и терригенные - песчаные с фосфоритами, глинисто-песчаные, иногда пестроцветные. Карбонатные формации знаменуют собой обычно "зенит" развития комплекса, а далее можно наблюдать смену формаций в обратной последовательности. Для многих платформ типичны покровно-ледниковые отложения.

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам крупных геотектонических циклов: байкальского, каледонского, герцинского, альпийского и др. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась.

Для платформ характерен и специфический магматизм, проявляющийся в моменты их тектономагматической активизации. Наиболее типична трапповая формация, объединяющая вулканические продукты - лавы и туфы и интрузивы, сложенные толеитовыми базальтами континентального типа с несколько повышенным по отношению к океанским содержанием оксида калия, но все же не превышающим 1- 1,5 %. Объем продуктов трапповой формации может достигать 1-2 млн. км3 , как, например, на Сибирской платформе. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка).

Кроме древних платформ выделяют и молодые, хотя чаще их называют плитами, сформировавшимися либо на байкальском, каледонском или герцинском фундаменте, отличающемся большей дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Примерами таких платформ (плит) являются: эпибайкальская Тимано-Печорская, эпигерцинская Скифская, эпипалеозойская Западно-Сибирская и др.

Земная кора – это комплекс горных пород, залегающих выше границы Мохоровичича. Горные породы представляют собой закономерные агрегаты минералов. Последние состоят из различных химических элементов. Химический состав и внутренняя структура минералов зависят от условий их образования и определяют свойства. В свою очередь, строение и минеральный состав горных пород указывают на происхождение последних и позволяют определять породы в полевых условиях.

Выделяют два типа земной коры – континентальную и океаническую, резко различающихся составом и строением. Первая, более легкая, формирует возвышенные участки – континенты с их подводными окраинами, вторая занимает дно океанических впадин (ложе океана с глубинамиболее 2500-3000 м). Континентальная кора состоит из трех слоев - осадочного, гранито-гнейсового и гранулито-базитового, мощностью от 30-40 км на равнинах до 70-75 км под молодыми горами. Океанская кора мощностью до 6-7 км имеет трехслойное строение. Под маломощным слоем рыхлых осадков залегает второй океанский слой, состоящий из базальтов, третий слой сложен габбро с подчиненными ультрабазитами. Континентальная кора обогащена кремнеземом и легкими элементами – Al, Na, K, C, –по сравнению с океанической.

Вопрос 20. Минералы. Понятие о минералах. Понятие об аморфном и кристаллическом состоянии вещества. Принципы классификации минералов. Главнейшие породообразующие минералы, их химический состав и физические свойства.

Минералами называются природные химические соединения или отдельные химические элементы, возникшие в результате физико-химических процессов, происходящих в Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, и лишь незначительная часть - в аморфном. Свойства кристаллических веществ обусловливаются как их составом, так и внутренним строением, т.е. кристаллической структурой. В кристаллических решетках расстояния между элементарными частицами и характер связей между ними в разных направлениях неодинаковы (рис. 2.1), что обусловливает и различие свойств. Такое явление называется анизотропией или неравносвойственностью кристаллического вещества.Анизотропия кристаллических веществ проявляется во многих их особенностях. Например, в способности кристаллического вещества самоограняться, т.е. образовывать многогранники - кристаллы, форма кристаллов разнообразна и зависит, прежде всего, от внутреннего строения данного соединения.

Рис. 2.1. Кристаллические решетки: а - алмаза (С), б - графита (С)

 

Проявление анизотропии можно рассмотреть на примере минерала графита, внутренняя структура которого приведена на рис. 2.1,б. Расстояние между атомами углерода в пределах плоских слоев решетки составляет 0,14 нм (1,42 А), между слоями оно больше-0,33 нм (3,39 А). Это объясняет способность графита легко расщепляться (весьма совершенная спайность - см. ниже) на тонкие листочки, параллельные слоям решетки, и с трудом ломаться по неровным поверхностям в других направлениях, где расстояния между частицами и силы сцепления между ними больше.

В аморфных веществах закономерность в расположении частиц отсутствует. Свойства их зависят только от состава и во всех направлениях статистически одинаковы, т.е. аморфные вещества изотропны или равносвойственны. Прежде всего, это выражается в том, что аморфные вещества не образуют кристаллов и не обладают спайностью.

В различных физико-химических условиях вещества одинакового химического состава могут приобретать разное внутреннее строение, а следовательно, и разные физические свойства и создавать таким образом разные минералы. Это явление называется полиморфизмом (греч. "поли" - много). В качестве яркого примера полиморфизма можно назвать две модификации углерода (С): упомянутый минерал графит и минерал алмаз. Внутренняя структура алмаза резко отличается от строения графита (рис. 2.1,а). В структуре алмаза сцепления между атомами углерода однотипны и прочны. Отсюда вытекают и свойства алмаза (С), резко отличные от свойств графита (С): низкие твердость-1 и плотность-2,1-2,3 графита и высокие-алмаза, соответственно 10 и 3,5 и др.

Важным свойством кристаллических веществ, обусловленным внутренним строением, является также его однородность, выражающаяся в том, что любые части кристаллического вещества в одинаковых направлениях обладают одинаковыми свойствами, т.е. если кристалл графита в одном направлении имеет весьма совершенную спайность, то и любой его обломок в том же направлении обладает этим свойством.

Формы нахождения минералов в природе разнообразны и зависят главным образом от условий образования. Это либо отдельные кристаллы или их закономерные сростки (двойники), либо четко обособленные минеральные скопления, либо, чаще, скопления минеральных зерен - минеральные агрегаты.

Отдельные изолированные кристаллы и кристаллические двойники, т.е. закономерные сростки кристаллов, возникают в благоприятных для роста условиях. Форма кристаллов разнообразна и отражает как состав и внутреннюю структуру минерала, так и условия образования. Двойниками называются закономерные сростки кристаллов. Законы двойникования разнообразны, что приводит к формированию морфологически различных двойников.

Среди обособленных минеральных скоплений наиболее часто встречают друзы, представляющие скопления кристаллов, приросших к стенкам пещер или трещин. Секреции - результат постепенного заполнения ограниченных пустот минеральным веществом, отлагающимся на их стенках. Они имеют обычно концентрическое строение, отражающее стадийность формирования. Мелкие секреции называются миндалинами, крупные - жеодами. Конкреции - более или менее округлые образования, возникшие путем осаждения минерального вещества вокруг какого-либо центра кристаллизации. С этим часто связано концентрическое или радиально-лучистое строение конкреций. Мелкие округлые образования обычно концентрического строения называются оолитами. Их возникновение связано с выпадением минерального вещества в подвижной водной среде. Натечные образования, осложняющие поверхности пустот, возникают при кристаллизации минерального вещества из просачивающихся подземных вод. Натеки, свисающие со сводов пустот, называются сталактитами, растущие вверх со дна пещер - сталагмитами. На поверхности трещин могут развиваться плоские минеральные пленки, имеющие разное строение.

Наиболее широко развиты минеральные агрегаты кристаллического, аморфного или скрытокристаллического строения, слагающие толщи пород. Они образуются при более или менее одновременном выпадении из растворов или расплавов множества минеральных частиц. В кристаллических агрегатах минералы находятся в кристаллическом состоянии, но зерна их имеют неправильную форму. Величина зерен зависит от условий кристаллизации и изменяется от крупных до землистых. В жилах кристаллические агрегаты часто имеют массивное (сливное) строение, при котором отдельные зерна на глаз не различимы. Аморфные агрегаты представляют собой однородные плотные или землистые массы, обладающие матовым, восковым или слабожирным блеском. Скрытокристаллические агрегаты внешне напоминают аморфные и отличаются от них только микроскопически.

Они представляют собой коллоидные системы, состоящие из тонкодисперсных кристаллических частиц и заключающей их среды.

Встречаются минеральные образования, состав которых не соответствует форме, которую они слагают,- это так называемые псевдоморфозы (греч. "псевдо" - ложный). Они возникают при химических изменениях ранее существующих минералов или заполнении пустот, образовавшихся при выщелачивании каких-либо минеральных или органических включений. К первым относятся, например, часто встречающиеся псевдоморфозы лимонита по пириту, когда кубические кристаллы пирита (FeS2) превращаются в скрытокристаллический лимонит, ко вторым - псевдоморфозы опала по древесине и др.

Физические свойства минералов. Постоянство химического состава и внутренней структуры минералов обусловливает их свойства. На этом основаны различные методы минералогических исследований и определений минералов. Большинство из них требует специального оборудования и возможно только в стационарных условиях. Однако каждый исследователь, имеющий дело с минералами и горными породами, должен владеть методом их полевого определения, основанного на изучении внешних, видимых невооруженным глазом (макроскопически) свойств.

Морфология кристаллов минералов может явиться важным диагностическим признаком, хотя следует отметить, что в природе один и тот же минерал в разных условиях образует кристаллы различной формы, а разные минералы могут давать одинаковые кристаллы. Отметим лишь некоторые данные кристаллографии, используемые ниже при характеристике минералов. Все разнообразие форм кристаллов минералов удается разделить на шесть крупных подразделений, называемых сингониями. Не останавливаясь на специальных вопросах, рассматриваемых в курсах кристаллографии, отметим только, что сингонии отражают степень симметричности кристаллов. Выделяют сингонии: кубическую, объединяющую наиболее симметричные кристаллы, которые имеют несколько осей симметрии высшего порядка; гексагональную (с тригональной подсингонией), кристаллы которой имеют одну ось шестого или третьего порядка; тетрагональную - кристаллы имеют одну ось четвертого порядка. Наименее симметричные кристаллы принадлежат к ромбической, моноклинальной или триклинной сингониям, в кристаллах которых отсутствуют оси симметрии высшего порядка.

Аморфные вещества

Главный признак аморфного (от греческого "аморфос" - бесформенный) состояние вещества - отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния. При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.

В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.

Аморфные тела изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Кристаллические вещества

Твердые кристаллы - трехмерные образования, характеризующиеся строгой повторяемостью одного и того же элемента структуры (элементарной ячейки) во всех направлениях. Элементарная ячейка представляет собой наименьший объем кристалла в виде параллелепипеда, повторяющегося в кристалле бесконечное число раз.

Геометрически правильная форма кристаллов обусловлена, прежде всего, их строго закономерным внутренним строением. Если вместо атомов, ионов или молекул в кристалле изобразить точки как центры тяжести этих частиц, то получится трехмерное регулярное распределение таких точек, называемое кристаллической решеткой. Сами точки называют узлами кристаллической решетки.

КЛАССИФИКАЦИЯ МИНЕРАЛОВ

Современная классификация минералов основана на их химическом составе и кристаллической структуре. Главнейшие породообразующие и рудные минералы, изучение которых входит в программу курса, объединяются в несколько классов.

1.       Самородные элементы. В этот класс входят минералы, состоящие из одного элемента. К нему относятся: сера, графит, алмаз и др.

2.       Сульфиды. Эти минералы представляют собой соединения различных элементов с серой. К ним относятся: пирит (серный колчедан – FeS2), халькопирит (медный колчедан – CuFeS2), галенит (свинцовый блеск – PbS), сфалерит (цинковая обманка – ZnS).

3.       Галоиды. Минералы этого класса в химическом отношении представляют собой соли галоидно-водородных кислот. К ним относятся: галит (поваренная соль – NaCl), сильвин - KCl, карналлит – MgCl2KCl 6H2O.

4.       Окислы. В этот класс входят минералы, которые соединяются с кислородом и гидроокислами. Это кварц – SiO2 – самый распространённый минерал в земной коре, корунд – Al2O3, гематит (красный железняк, или железный блеск – Fe2 O3), магнетит (магнитный железняк – Fe3O4), лимонит (бурый железняк – Fe2O3 nH2O).

5.       Карбонаты. В класс карбонатов входят минералы: кальцит – CaCO3, доломит – CaMg(CO3)2, магнезит – MgCO3.

6.       Сульфаты. К этому классу относятся минералы, представляющие собой соли серной кислоты: гипс – CaSO4 2H2O, ангидрит (безводный сульфат кальция) – CaSO4.

7.       Фосфаты. Апатит – Ca5(F,Cl)[PO4]3.

8.       Силикаты. В этот класс входят наиболее распространённые в земной коре породообразующие минералы. Они сложные по химическому составу и участвуют в строении всех типов горных пород, особенно магматических и метаморфических. К ним относятся: оливин, роговая обманка, авгит мусковит, биотит, тальк, каолинит и др.

9. Органические соединения. Янтарь.

Вопрос 21. Горные породы. Понятие о горных породах и их генетическая классификация. Магматические горные породы, их классификация. Интрузивные и эффузивные горные породы. Вулканогенно – обломочные ( вулканокластические) горные породы. Полезные ископаемые , связанные с магматическими породами.

 Горные породы представляют естественные минеральные агрегаты, образующиеся в земной коре или на ее поверхности в ходе различных геологических процессов. Основную массу горных пород слагают породообразующие минералы, состав и строение которых отражают условия образования пород. Кроме этих минералов в породах могут присутствовать и другие, более редкие (акцессорные) минералы, состав и количество которых в породах непостоянны.

Если горная порода представляет агрегат одного минерала, она называется мономинеральной. К таким породам относятся, например, мраморы, кварциты. Первые представляют агрегат кристаллических зерен кальцита, вторые - кварца. Если в породу входит несколько минералов, она называется полиминеральной. В качестве примера таких пород можно назвать граниты, состоящие из кварца, калиевого полевого шпата, кислого плагиоклаза, а также темноцветных - биотита, роговой обманки, реже авгита.

Строение горных пород характеризуется структурой и текстурой. Структура определяется состоянием минерального вещества, слагающего породу (кристаллическое, аморфное, обломочное), размером и формой кристаллических зерен или обломков, входящих в ее состав, их взаимоотношениями. Если порода целиком состоит из кристаллических зерен, выделяют полнокристаллическую структуру. При резком преобладании нераскристаллизовавшейся массы говорят о стекловатой или аморфной структуре. Если в стекловатую массу вкраплены кристаллические зерна (фенокристы или порфировые вкрапленники), структуру называют порфировой. Если крупные кристаллические зерна вкраплены также в кристаллическую, но более мелкозернистую массу, структура называется порфировидной. Когда порода состоит из каких-либо обломков, говорят об обломочной структуре.

Кристаллическая и обломочная структуры подразделяются по величине зерен и обломков. Так, среди кристаллических структур выделяют крупнозернистые, с диаметром зерен более 5 мм, среднезернистые с зернами от 5 до 2 мм в поперечнике, мелкозернистые с диаметром зерен менее 2 мм4 . В тех случаях, когда порода состоит из очень мелких, не различимых невооруженным глазом кристаллических зерен, ее структура определяется как афанитовая, или скрытокристаллическая. При более или менее одинаковых размерах зерен породы говорят о равномернозернистой структуре, в противном случае - о неравномернозернистой. Под текстурой понимают сложение породы, т.е. расположение в пространстве слагающих ее частиц (кристаллических зерен, обломков и др.). Выделяют плотную и пористую текстуры, однородную или массивную и ориентированную (слоистую, сланцеватую и др.).

В основу классификации горных пород положен генетический признак. По происхождению выделяют: 1) магматические, или изверженные, горные породы, связанные с застыванием в различных условиях силикатного расплава - магмы и лавы; 2) осадочные горные породы, образующиеся на поверхности в результате деятельности различных экзогенных факторов; 3) метаморфические горные породы, возникающие при переработке магматических, осадочных, а также ранее образованных метаморфических пород в глубинных условиях при воздействии высоких температур и давления, а также различных жидких и газообразных веществ (флюидов), поднимающихся с глубины.

Магматические горные породы наряду с метаморфическими слагают основную массу земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. В земной коре они образуют тела разнообразной формы и размеров, так называемые структурные формы, состав и строение которых зависят от химического состава исходной для данной породы магмы и условий ее застывания (см. гл. 11). В основе классификации магматических горных пород лежит их химический состав. Учитывается, прежде всего, содержание оксида кремния, по которому магматические породы условно делят на четыре группы кислотности: ультраосновные породы, содержащие более 45% кремнезема (SiO2), основные - 45-52, средние-52-65 и кислые-более 65%. Химический состав может быть определен лишь при лабораторных исследованиях. Однако минеральный состав отражает химический и может быть использован для выяснения группы кислотности. Породообразующими минералами магматических пород являются минералы класса силикатов: кварц, полевые шпаты, слюды, амфиболы, пироксены, которые в сумме составляют около 93% всех входящих в магматические породы минералов, затем оливин, фельдшпатоиды, некоторые другие силикаты и около 1% минералов других классов. Вспомнив химический состав этих минералов, нетрудно убедиться, что в более основных породах должны преобладать цветные (темноцветные), менее богатые кремнеземом железисто-магнезиальные (мафические, или фемические) минералы, а в кислых - преимущественно светлые. Такое соотношение цветных и светлых минералов обусловливает, светлую окраску кислых пород, более темную основных и черную ультраосновных. С этим же связано увеличение плотности пород от кислых (2,58) к ультраосновным (до 3,4).

В зависимости от условий, в которых происходило застывание магмы, магматические породы делят на ряд групп: породы глубинные, или интрузивные, образовавшиеся при застывании магмы на глубине, и породы излившиеся, или эффузивные, связанные с застыванием магмы, излившейся на поверхность, т.е. лавы. Среди интрузивных пород выделяют ряд разновидностей по глубине застывания магмы (см. гл. 11), а также жильные породы, связанные с застыванием магмы в трещинах. К вулканическим породам кроме излившихся относятся пирокластические, представляющие скопление выброшенного при вулканических взрывах и осевшего на поверхность материала - куски застывшей в воздухе лавы, обломки минералов и пород.

Физико-химические условия застывания магмы на глубине и лавы на поверхности различны, соответственно различны и образующиеся при этом породы. Наиболее резко это выражается в структуре пород. На глубине при медленном застывании магмы в условиях постепенного снижения температуры и давления, в присутствии летучих компонентов, способствующих кристаллизации, образуются породы с полнокристаллической структурой. Размеры кристаллических зерен зависят от свойств магмы, режима охлаждения, скорости кристаллизации. Излившаяся на поверхность лава попадает в иные условия температуры и давления, теряет растворенные в ней газы и застывает или в виде аморфной массы, имеющей стекловатую структуру, или образует микрокристаллическую массу, т.е. афанитовую структуру. У излившихся пород встречается также порфировая структура, кристаллические вкрапленники которой и основная некристаллическая масса возникли в разных условиях и разновременно.

Интрузивные породы обладают массивной текстурой, характеризующейся отсутствием ориентировки минеральных зерен. Реже встречается ориентированная текстура, отражающая движение магмы в процессе застывания, а также результат ее гравитационной дифференциации. В эффузивных породах ориентированная текстура возникает чаще. При этом кристаллические зерна, струи стекла, пустоты располагаются упорядоченно по направлению течения потока лавы и породы приобретают флюидальную текстуру. Для них характерна также пористая текстура, отражающая процесс выделения газов при застывании лавы.

Определение эффузивных пород по минеральному составу сильно затруднено главным образом тем, что значительная их часть состоит из нераскристаллизовавшегося вулканического стекла, для которого можно говорить лишь о химическом составе. Определение таких пород также затрудняют и более поздние их изменения. В случае порфировой структуры эффузивных пород пользуются терминами порфир, если кристаллические вкрапленники представлены преимущественно калиевыми полевыми шпатами, и порфирит, если во вкрапленниках преобладают плагиоклазы.

По отношению кремнезема (SiO2) и щелочей (K2O, Na2O) выделяют нормальный ряд пород, характеризующийся относительно малым содержанием щелочей, и щелочной ряд с повышенным их содержанием. В земной коре преобладают породы нормального ряда, которые главным образом и будут рассмотрены ниже.

В табл. 2.4 помещены наиболее распространенные интрузивные и эффузивные породы (правая часть таблицы) и указаны их характерные признаки, позволяющие наметить путь определения пород:

1. В вертикальных графах I-IV выделены группы пород по кислотности: I - кислые, II - средние, III - основные и IV - ультраосновные породы. В нижней части таблицы для каждой из групп указаны главные породообразующие минералы - светлые и цветные. Минералы расположены сверху вниз от более к менее характерным для данный группы. Определение принадлежности породы к той или иной группе кислотности производится по минеральному составу, отношению светлых и цветных минералов и плотности (см. выше).

2. Кислые породы подразделены на две подгруппы. К первой (графа 1а) относятся породы, в которых преобладают калиевые полевые шпаты, ко второй (графа 1б) - породы преимущественно с плагиоклазами. Макроскопически далеко не всегда удается определить, какой полевой шпат преобладает в породе, особенно при рассмотрении эффузивных пород. В этом случае точное определение породы может быть произведено только при микроскопическом исследовании или с помощью химического анализа.

3. В каждой группе выделяется два горизонтальных ряда, соответствующих условиям образования породы - эффузивные породы (сверху) и интрузивные (снизу). Определение текстуры (графа 3) и структуры (графа 4) позволяет отнести породы к тому или иному ряду.










Последнее изменение этой страницы: 2018-04-12; просмотров: 490.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...