Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Антибиотики. Классификация. механизм действия. единицы измерения




Антибиотики – это группа органических антибактериальных средств, полученных из бактерий или плесени, которые являются токсичными для других бактерий.

В настоящее время получено более 10 000 различных антибиотиков. Существует несколько классификаций антибиотиков. Главной считается классификация по химической структуре.

По химической структуре антибиотики делят на 8 групп:

1) b- лактамиды – пенициллин, цефалоспорины и др.;

2) макролиды – эритромицин, олеандомицин;

3) аминогликозиды – стрептомицин, канамицин, гентамицин;

4) тетрациклины – окситетрациклин, доксициклин;

5) полипептиды – полимиксины, бацитрины;

6) полиены – нистатин, амфотерицин В;

7) анзимицины – рифампицин;

8) дополнительный класс – левомицетин, линкомицин, гризеофульвин.

По происхождению антибиотики делят 5 классов:

1) из грибов – пенициллин;

2) из бактерий – субтилин, грамицидин;

3) из актиномицетов – стрептомицин;

4) из тканей животных – лизоцим, интерферон;

5) из растений – хлорофилипт из эвкалипта, аллилчеп – из лука, аллилсат – из чеснока, из лишайников – усниновая кислота.

Антибиотики могут быть получены и путем химического синтеза.

По спектру действия антибиотики делят на 4 группы:

1) антибактериальные широкого (тетрациклины, левомицетин) и узкого (полимиксин, бензилпенициллин) спектра действия;

2) противогрибковые широкого (амфотерицин В) и узкого (нистатин) спектра действия;

3) противопротозойные – против простейших ( фумагиллин – антибиотик узкого спектра действия – против амеб);

4) противоопухолевые – препараты, обладающие цитотоксическим действием (рубомицин).

Антибиотики широкого спектра действия –оказывают влияние на все виды бактерий, грибов или простейших.

Антибиотики узкого спектра действия – оказывают влияние на небольшую группу бактерий или других микроорганизмов.

По механизму действия антибиотики делят на 4 группы:

1) угнетают синтез белков клеточной стенки (b-лактамы – пенициллины, цефалоспорины);

2) нарушают синтез клеточной мембраны (полиены – нистатин; полимиксины)

3) ингибируют синтез белков (тетрациклины, левомицетин, аминогликозиды - – стрептомицин, мономицин, неомицин, канамицин, гентамицин);

4) ингибируют синтез нуклеиновых кислот ( протитвоопухолевые антибиотики: актиномицин подавляет синтез РНК, рубомицин – синтез ДНК).

Бактерицидным действием обладают стрептомицин, пенициллины, неомицин, канамицин, полимиксин, цефалоспорины.

Бактериостатическим действием обладают тетрациклины, макролиды, левомицетин. Бактериостатические препараты необходимо использовать длительно. Их можно применять после бактерицидных препаратов для долечивания.

Измерение активности антибиотиков. Активность антибиотиков выражают в единицах действия (ЕД) или в микрограммах (мкг); обычно эти величины равны т.е. 1 ЕД = 1 мкг.

33 извитые формы бактерий. Спирохеты. Роды патогенных спирохет

Извитые формы — спиралевидные бактерии, напри­мер спириллы, имеющие вид штопорообразно изви­тых клеток.

К патогенным спириллам относится возбудитель содоку (болезнь укуса крыс). К извитым также относятся кампилобактеры, име­ющие изгибы как у крыла летящей чайки; близки к ним и такие бактерии, как спирохеты.

Спирохеты — тонкие, длинные, извитые (спирале­видной формы) бактерии, отличающиеся от спирилл подвижностью, обусловленной сгибательными измене­ниями клеток.

Спирохеты состоят из наружной мембраны (клеточной стенки), окружающей протоплазматический цилиндр с цитоплазматической мембраной и аксиальной нитью (аксистиль). Аксиальная нить находится под наружной мембраной клеточной стенки и как бы закручивается вокруг протоплазматического цилиндра спирохе­ты, придавая ей винтообразную форму (первичные завитки спирохет). Аксиальная нить состоит из фибрилл — аналогов жгутиков бактерий и представляет собой сократительный белок флагеллин. Фибриллы прикреплены к концам клетки и направ­лены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам враща­тельное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками. Спирохеты плохо воспринимают краси­тели. Обычно их окрашивают по методу Романовского—Гимзы или серебрением. В живом виде их исследуют с помощью фа-зово-контрастной или темнопольной микроскопии.

Спирохеты представлены 3 родами, патогенными для чело­века: Treponema, Borrelia, Leptospira. Спирохеты рода Тгеропета имеют 8—12 равномерных мелких завитков. Патогенными пред­ставителями являются T. pallidiim — возбудитель сифилиса и T. pertenue — возбудитель тропической болезни — фрамбезии. Имеются и сапрофиты — обитатели полости рта и ила водоемов. Спирохеты рода Borrelia более длинные, имеют по 3—8 крупных завитков. К ним относится возбудитель возвратного тифа B.recurrentis. Спирохеты рода Leptospira имеют завитки неглу­бокие и частые — в виде закрученной веревки. Концы этих нитевидных спирохет изогнуты наподобие крючков с утолще­ниями на концах. Образуя вторичные завитки, они приобретают вид букв S или С. Патогенный представитель L.interrogans вызывает лептоспироз. Патогенные лептоспиры попадают в организм с водой или пищей, приводя к развитию кровоиз­лияний и желтухи. Сапрофитные представители обитают в воде.

 

34 Ферменты микробов,классификация

Ферменты – это высокомолекулярные соединения белковой природы, которые являются катализаторами (т. е. оказывают влияние на скорость протекающей реакции).

Свойства ферментов:

Небольшое количество катализатора обеспечивает превращение большого количества субстрата, оставаясь при этом в свободном состоянии.

Для ферментов характерна высокая специфичность действия.

Ферменты, синтезируемые микробной клеткой, способны действовать, будучи выделенными из нее.

Группы ферментов: экзоферменты (действуют вне клетки) и эндоферменты (действуют в самой клетке).

Экзоферменты – это ферменты, не связанные с цитоплазмой клетки, они свободно выделяются во внешнюю среду или субстрат.

Чаще всего они участвуют в питании микроорганизмов.

Эндоферменты – это ферменты, которые прочно связаны с цитоплазмой клетки, они осуществляют свою деятельность внутри клетки.

Чаще всего они участвуют в обмене веществ. Для их выделения клетку предварительно нужно разрушить.

Биохимические свойства бактерий определяются составом ферментов:

протеолитические – расщепление белков,

липолитические – расщепление жиров,

сахаролитические – расщепление углеводов.

Классификация ферментов. Ферменты подразделяют на несколько классов:

Оксидоредуктазы (катализируют окисл-вост-е реакции между двумя субстратами и принимают участие в дыхании клетки).

Трансферазы (осуществляют межмолекулярные перенос химических групп от одних соединений к другим).

Гидролазы (катализируют реакции расщепления внутримолекулярных связей, путем связывания молекул воды).

Лиазы (катализируют реакции путем присоединения или отрыва двух связей, но без присоединения воды или окисления).

Изомеразы (осуществляют реакции изомеризации, т. е. внутримолекулярные перемещения групп).

Лигазы (синтетазы) (катализируют процессы синтеза связей за счет энергии расщепления пирофосфатных связей в молекуле АТФ).

Значение ферментов в жизнедеятельности микробой: питание микроорганизмов осуществляется благодаря наличию в клетке различных ферментов, катализирующих все жизненно необходимые реакции.

Использование ферментотивной активности микробов. Ферментативную активность бактерий и грибов широко используют в промышленности для получения органических кислот (уксусной, молочной, щавелевой, лимонной), приготовления молочных продуктов (сыр, ацидофилин, кумыс), в виноделии, пивоварении и других отраслях промышленности. Знание ферментативных процессов, характерных для определенного вида микроорганизмов.

35 окраска по романовскому -гимза, методика учет

Окрашивание по Романовскому — Гимзе — цитологический метод окрашивания микроорганизмов, клеточных структур и тканей различных видов (в том числе крови) для изучения методом световой микроскопии. Предложена в 1904[1] году Густавом Гимзой. В авторской версии название красителя — «Giemsasche Lösung für die Romanowsky Färbung» (Раствор Гимзы для окраски по Романовскому). Окрашивает ацидофильные образования в различные оттенки красного цвета, базофильные — в цвета от пурпурного до синего.

Методика окраски по Граму

На фиксированный мазок наносят карболово-спиртовой раствор генцианового фиолетового на 1-2 минуты, затем краситель сливают

Наносят раствор Люголя на 1 мин.

Обесцвечивают препарат этиловым спиртом в течение 30-60 секунд до прекращения отхождения фиолетовых струек красителя.

Препарат промывают водой.

Мазок докрашивают водным раствором фуксина в течение 1-2 минут, промывают водой и высушивают фильтровальной бумагой.

Бактерии окрашиваются в фиолетово-красный цвет, цитоплазма клеток — в голубой, ядра — в красный. При окрашивании простейших их цитоплазма приобретает голубой цвет, а ядра — красно-фиолетовый.

36 Генетические рекомбинации у бактерий

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

Трансдукция — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую — перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

Конъюгация бактерий состоит в переходе генети­ческого материала (ДНК) из клетки-донора («мужской») в клет­ку-реципиент («женскую») при контакте клеток между собой.

Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержа­щие F-фактора, являются женскими; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фак­тора значительно меньше хромосомы и содержит гены, контро­лирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначае­мым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота реком­бинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клет­ку F", продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор — F'.

При конъюгации происходит только частичный перенос ге­нетического материала, поэтому ее не следует отождествлять пол­ностью с половым процессом у других организмов.

37 плазмиды бактерий виды свойства

Плазмиды — внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1—5 % ДНК хромосомы. Плаз­миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег­рировать) в хромосому и реплицироваться вместе с ней. Разли­чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Среди фенотипических признаков, сооб­щаемых бактериальной клетке плазмидами, можно выделить следующие:

1) устойчивость к антибиотикам;

2) образование колицинов;

3) продукция факторов патогенности;

4) способность к синтезу антибиотических веществ;

5) расщепление сложных органических ве­ществ;

6) образование ферментов рестрикции и модификации.

Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бак­терий. Плазмиды несут гены, не обязательные для клетки-хозя­ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре­менные преимущества по сравнению с бесплазмидными бакте­риями.

Некоторые плазмиды находятся под стро­гим контролем. Это означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных реплико-нов их принято разбивать на группы совмести­мости. Несовместимость плазмид связана с не­способностью двух плазмид стабильно сохра­няться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регули­руется одним и тем же механизмом.

Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.

У бактерий различных видов обнаружены R-плазмиды, несу­щие гены, ответственные за множественную устойчивость к лекарственным препаратам — антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, напри­мер возбудителей чумы, столбняка, способность почвенных бак­терий использовать необычные источники углерода, контроли­ровать синтез белковых антибиотикоподобных веществ — бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз­мов позволяет полагать, что аналогичные структуры широко рас­пространены у самых разнообразных микроорганизмов.

Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетичес­кого материала, широко используются в генетической инжене­рии для получения рекомбинантных штаммов. Бла­годаря быстрому самокопированию и возможности конъюгаци-онной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий

38 титрование фагов,методика , учет

После выявления бактериофага в исследуемом материале необходимо определить его количественное содержание или, как принято говорить, найти титр фага.

Для выражения титра бактериофага можно пользоваться двумя показателями: количеством активных корпускул бактериофага, содержащихся в 1 мл исследуемой жидкости бактериофага, или величиной наибольшего разведения исследуемой жидкости, при котором бактериофаг проявляет свое литическое действие. Полученную при этом величину выражают отрицательным логарифмом 10, где степень указывает разведение фага. Средний титр бактериофага составляет 10.

Для титрования бактериофага предложены различные методы, однако наибольшее распространение получили способ титрования фага в жидкой питательной среде, предложенный Аппельманом, и метод агаровых слоев Грациа.

Титрование бактериофага в жидкой питательной среде по методу Аппельмана.

Метод Аппельмана основан на внесении различных количеств титруемого бактериофага в бульон, засеянный одной и той же дозой культуры гомологичных микробов, с целью получения феномена бактериофагии.

Двенадцать пробирок, содержащих по 4,5 мл мясопептонного бульона, ставят в штатив в один ряд. В 1-ю пробирку стерильной пипеткой вносят 0,5 мл исследуемого фага. Содержимое пробирки перемешивают и 0,5 мл жидкости из 1-й пробирки переносят во 2-ю, из 2-й - в З-ю и т. д. до 10-й включительно. Из 10-й пробирки лишние 0,5 мл выливают, 11-я и 12-я пробирки контрольные. Переносят жидкость из одной пробирки в другую каждый раз отдельной стерильной пипеткой емкостью 1 мл. Таким образом, в 10 пробирках получают разведения бактериофага от 1:10 до 1: 10-10.

Во все 10 пробирок приготовленного ряда разведений вносят по 0,2 мл 18—24-часовой бульонной культуры бактерий, одноименных титруемому фагу. Прибавляемая культура не должна содержать устойчивых к фагу клеток.

Густота микробной взвеси, прибавляемой в пробирки с титруемым бактериофагом, существенного значения не имеет, так как опытным путем было установлено, что изменение микробной концентрации в пределах 100 000—4 500 000 в 1 мл не оказывает заметного влияния на исход титрования бактериофага. Пробирка 11-я — контроль культуры, содержит 5 мл бульона и 0,2 мл бульонной культуры микробов. Пробирка 12-я - контроль на стерильность, содержит 5 мл бульона без добавления культуры и фага. Штатив с пробирками помещают в термостат при 37°С на 18—20 ч.

Учет результатов производят через 18—20 ч после инкубации в термостате при 37 °С. Титром считают то максимальное разведение бактериофага, при котором наблюдается полный лизис чувствительной к нему культуры. Практически это соответствует той последней пробирке в ряду, в которой бульон еще остается совершенно прозрачным.

39 наследственная изменчивость бактерий ее значение

Наследствен­ность — это свойство, присущее всем живым организмам, заклю­чающееся в способности передавать следующему поколению одинаковые признаки и особенности развития, благодаря чему достигается сходство между родителями и потомством.

Материальную основу наследственности, как уже указыва­лось, составляют нуклеиновые кислоты, как правило, ДНК, и в отдельных случаях (для некоторых вирусов) — рибонуклеиновая кислота (РНК). Нуклеиновые кислоты состоят из нуклеотидов, которые содержат три компонента: 1) азотистое основание — тимин (урацил), аденин, гуанин или цитозин; 2) углевод — дезоксирибоза (рибоза); 3) остаток фосфорной кислоты.

В основе управления наследственностью лежит генотип — со­вокупность (набор) генов, определяющих наследственную основу организмов, в том числе микробов. Генотип проявляется в фено­типе — сумме уже реализованных признаков, которые были за­ложены в генотипе (образование жгутиков у микробов, фермен­тация углеводов и т.п.). Микробная клетка наследует не при­знак, как таковой, а потенциальную способность к проявлению этого признака, реализация которой зависит от конкретных ус­ловий внешней среды.

 

Функциональной и структурной единицей наследственности служит ген. Он занимает участок молекулы нуклеиновой кислоты и состоит из отдельных нуклеотидов. Гены осуществляют хране­ние и передачу по наследству генетической информации, которая закодирована в молекуле нуклеиновой кислоты. Систему линей­но расположенных генов называют геномом, а его структурным выражением является хромосома. Она точно воспроизводит свою копию, строго регистрирует происходящие изменения, кодирует с помощью генов наследственные признаки и распределяет их на две равные части в процессе деления клетки. В бактериальной клетке содержится одна хромосома.

Качество, противоположное наследственности, — изменчи­вость, заключающаяся в изменении генов и их проявлении в процессе развития организма. Наследственность и изменчивость представляют собой как бы две стороны одного и того же явле­ния — в природе происходит закономерный процесс изменчи­вости и передачи наследственных признаков.

Какие признаки микроорганизмов при этом могут изменять­ся? Наиболее наглядно — изменение морфологических призна­ков. Влияние различных экзогенных и эндогенных факторов приводит к тому, что некоторые бактерии принимают форму больших шаров, утолщенных нитей, колбовидных образований, ветвлений, напоминающих мицелий грибов. Такое явление на­зывается гетероморфизмом и выражает приспособление бактерий к необычным условиям существования. Эти изменения происхо­дят под действием солей, антибиотиков и других факторов. Из­меняться могут и другие признаки, например образование жгути­ков, спор. Так, листерии, выращенные при 22 °С, обладают жгу­тиками, а листерии, выращенные при 37 °С, как правило, лишены их.

Своеобразной формой изменчивости является образование L-форм бактерий, что связано с разрушением клеточной обо­лочки или утратой способности к ее формированию. Такие изменения возникают под действием ряда факторов, например пенициллина. Формируются колонии с темным плотным цент­ром и рыхлой ажурной периферией. Микробная клетка пре­вращается в большой шар без клеточной стенки, образуются вакуоли и зерна. Изменяются культуральные, антигенные и биологические свойства, микробов. Способность L-форм бак­терий сохранять приобретенные ими признаки и свойства называют стабилизацией. При временной стабилизации эти свойства сохраняются лишь в присутствии факторов, вызывав­ших образование L-форм, при стойкой — полностью утрачива­ется способность к возврату в исходное состояние.

Происходят также изменения культуральных свойств микро­бов. Культуры одного и того же вида бактерий могут отличаться по характеру роста на плотных средах, на которых образуются колонии двух типов: 1) гладкие — S-формы (англ. smooth — гладкий); 2) шероховатые — R-формы (англ. rough — шерохова­тый). Между ними существует несколько переходных типов ко­лоний — О-формы. Такая изменчивость называется диссоциацией. Для большинства бактерий культура в S-форме более типична, а клетки из такой культуры более вирулентны. Возбудитель сибир­ской язвы представляет исключение — наиболее вирулентны и типичны культуры этого микроба в R-форме.

Под влиянием различных воздействий у некоторых микробов изменяется обмен веществ, а также потребность в метаболитах. Появляются такие варианты микробов, которые для своего раз­вития нуждаются в определенных аминокислотах, витаминах. Эти штаммы называют ауксотрофами в отличие от исходных штаммов — прототрофов. Меняются и ферментативные способности бактерий. Добавле­нием в питательную среду определенных веществ удается уси­лить или ослабить синтез ферментов, а также лишить микробов способности продуцировать различные ферменты — индуциро­ванный синтез.

40 определение МБК антибиотика

Минимальная бактерицидная концентрация (МБК) - наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени.

Значение МБК используют при терапии антибиотиками, обладающими бактериостатическим действием, или при отсутствии эффекта от антибактериальной терапии у особой категории больных. Частными случаями для определения МБК могут быть, например, бактериальный эндокардит, остеомиелит или генерализованные инфекции у пациентов с иммунодефицитными состояниями.

Метод бумажных дисков (дискодиффузионный метод).

Метод наиболее прост и широко используется в клинической практике. Образование зоны ингибиции роста происходит в результате диффузии антибиотиков из носителя (диска) в питательную среду (рис. 11). В определенных пределах величина диаметра зоны ингибиции роста жестко связана с величиной МИК. Метод позволяет лишь косвенно судить о величине МИК. Основным результатом является отнесение микроорганизма к одной из категорий чувствительности.

Для проведения этого метода используют стандартные диски, содержащие определенное количество антибиотиков, и стандартную питательную среду, необходимую для роста данного вида микроорганизма. Из суточной микробной культуры готовят взвесь на физиологическом растворе (1 млрд. микробных тел в 1 мл) и разводят ее в 10 раз. На поверхность чашки с плотной средой наносят 1 мл микробной культуры и покачиванием чашки или стерильным шпателем равномерно распределяют ее по всей поверхности среды. Остаток удаляют пипеткой или сливают в дезинфицирующий раствор. Среду подсушивают 10-15 мин при комнатной температуре, после чего на поверхность газона стерильным пинцетом накладывают диски с антибиотиками (не более 6 на чашку диаметром 10 см) на расстоянии >1,5 см друг от друга и от краев чашки. Условия инкубации зависят от вида микроорганизма (для большинства видов – в термостате при 37оС 24 часа).

Учет проводят в падающем свете на фоне темной поверхности, измеряя диаметр зоны задержки роста (с учетом диаметра диска). Оценку результатов проводят по специальной таблице (обычно прилагается к набору дисков для определения чувствительности к антибиотикам) путем сопоставления диаметра зон задержки роста испытанной культуры с пограничными значениями диаметра зоны в таблице. Исследуемую культуру относят к одной из трех категорий: чувствительная, умеренно-чувствительная и устойчивая.

Описанный метод является полуколичественным. Для получения количественных результатов используют методы серийных разведений.

Е-тест (E-test или эпсилометрический метод).

Метод близок по технологии постановки к методу бумажных дисков. В качестве носителя используется узкая полоска полимера (0.5х6.0 см), пропитанная различными концентрациями антибиотиков (от минимальных до максимальных). Ингибиция роста микроорганизма вокруг полоски носителя происходит в зоне, где концентрация антибиотиков, диффундирующего из носителя, выше МИК (рис. 12). Концентрации антибиотиков нанесены на соответствующем отрезке поверхности носителя. Величину МИК учитывают в том месте, где граница зоны ингибиции роста вплотную подходит к носителю. Е-тест сочетает простоту постановки метода бумажных дисков и точность метода серийных разведений.

МЕТОДЫ СЕРИЙНЫХ РАЗВЕДЕНИЙ ОПРЕДЕЛЕНИЯ ЧУВСТВИТЕЛЬНОСТИ МИКРООРГАНИЗМОВ К АНТИБИОТИКАМ. АВТОМАТИЗИРОВАННЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ.

Позволяют количественно оценить чувствительность выделенного микроба к антибактериальным средствам и определить МИК препарата. Методы серийных разведений основаны на прямом определении величины МИК. Для определения величины МИК заданные концентрации антибиотиков вносят в питательную среду, которую затем засевают культурой исследуемого микроорганизма. После инкубации оценивают наличие или отсутствие видимого роста.

В зависимости от характера используемой питательной среды различают метод серийных разведений в бульоне, метод серийных разведений в агаре.

В зависимости от объема используемой жидкой питательной среды выделяют также методы серийных макро – и микроразведений.

Разновидностью метода серийных разведений является также метод, основанный на использовании только двух концентраций антибиотиков или даже одной концентрации, соответствующих пороговым (то есть концентрациям, отделяющим чувствительные микроорганизмы от промежуточных и промежуточные от резистентных). Метод обеспечивает получение качественных результатов, позволяющих отнести исследуемый микроорганизм к определенной категории чувствительности, и часто используется в коммерческих тест-системах.

Метод серийного разведения антибиотика в питательной среде (бульоне).

Первоначально готовят основной раствор, содержащий определенную концентрацию антибиотиков в специальном растворителе. Из него готовят ряд убывающих разведений антибиотиков в пробирках с бульоном (чаще двухкратные) и добавляют испытуемую культуру (обычно 105-106 бактериальных клеток). Контролем служит пробирка с бульоном и культурой без антибиотиков. Сроки инкубации зависят от вида микроорганизма (чаще сутки). Определяют МИК, которая соответствует концентрации препарата в последней пробирке с видимой задержкой роста (прозрачная питательная среда). Для определения минимальной бактерицидной концентрации (МБК) из нескольких последних пробирок с задержкой роста делают посев петлей на сектора чашки Петри. За МБК, которая, как правило, на несколько разведений меньше МИК, принимают концентрацию препарата в последней пробирке, посев из которой не дал роста.

Метод серийных разведений в плотной питательной среде.

Этот метод более чувствителен и точен, чем метод бумажных дисков. Каждый антибиотик испытывают, как правило, в трех концентрациях (исходя из уровней чувствительности микроорганизмов), которые добавляют к расплавленному и охлажденному агару. Агар с антибиотиками разливают в чашки Петри. Контролем служит чашка с агаром без антибиотиков. Посев производят петлей или лучше штампом-репликатором, который позволяет одновременно определить чувствительность к трем концентрациям антибиотиков 25-50 культур (в зависимости от числа лунок в штампе). Учет роста в термостате осуществляют спустя сутки. Культура считается чувствительной, если на месте посева нет роста ни одной колонии.

Оценка результатов:

-чувствительные культуры– их рост подавлен всеми тремя концентрациями (можно применять антибиотики в средней терапевтической дозе);

-среднечувствительные (можно применять антибиотики только в увеличенной дозе) – рост подавляют вторая и третья концентрация антибиотиков;

-умеренно-устойчивые подавляет только третья наиболее высокая концентрация (антибиотики применяют только местно);

-устойчивые (антибиотики применять нельзя по тестам in vitro) - растут на всех трех концентрациях.

 

41.методика окраски спор

Методика окраски спор по Цилю-Нильсену.До фиксации мажа бактерий на пламени препарат готовят обычным способом (см. 2.2.1). Далее на фиксированный в пламени и остывший препарат наносят 5%-ный раствор хромовой кислоты. Через 5—10 мин ее смывают водой. Препарат накрывают полоской фильтровальной бумаги и обильно смачивают бумагу карболовым фуксином Циля. Подогревают препарат над пламенем до появления паров (не до кипения), затем отводят его в сторону и добавляют новую порцию красителя. Эту процедуру проводят в течение 7 мин. Важно, чтобы краситель испарялся, но бумага не подсыхала. После охлаждения ее снимают, препарат промывают водой и тщательно промокают фильтровальной бумагой. В результате такой обработки клетки со спорами равномерно прокрашиваются.

Далее обесцвечивают цитоплазму клеток (но не споры), обрабатывая 1%-ным раствором соляной или серной кислот в течение 15—30 с. При приготовлении препарата спор Bacillus mycoides или Bacillus mesentericus рекомендуется обесцвечивать цитоплазму 16—18 с (размеренно считая вслух от 21 до 37—40). При превышении этого времени могут обесцветиться и споры. Затем препарат промывают водой и окрашивают метиленовым синим 2 мин.

Если все операции проделаны правильно, окраска получается контрастной и ярко-красные споры четко выделяются на голубом фоне цитоплазмы.

Методика окраски по Ожешко:

1. На нефиксированный мазок нанести 0,5 % раствор соляной кислотой и подогреть на пламени в течение 2-3 мин.

2. Кислоту слить, препарат промыть водой, просушить и фиксировать над пламенем. Затем окрасить по Цилю-Нильсену. Споры бактерий приобретают красный цвет, а вегетативные формы - синий.

42,строение бактериальной клетки

Клетка прокариотических организмов имеет сложное строго упорядоченное строение и обладает принципиальными особенностями ультраструктурной организации и химического состава.

Структурные компоненты бактериальной клетки делят на основные и временные (рис. 2). Основными структурами являются: клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид; временные — капсула, слизистый чехол, жгутики, ворсинки, эндоспоры, образующиеся лишь на определенных этапах жизненного цикла бактерий, у некоторых видов они отсутствуют полностью.

У прокариотической клетки структуры, расположенные снаружи от цитоплазматической мембраны, называют поверхностными (клеточная стенка, капсула, жгутики, ворсинки).

 

43. периоды развития микробиологии










Последнее изменение этой страницы: 2018-04-12; просмотров: 389.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...