Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Схемы внутрицехового распределения электроэнергии (380 В).




Внутрицеховые сети.

Внутрицеховые сети делятся на питающие и распределительные.

Питающие отходят от источника питания (ТП) к распределительным шкафам (РШ), к распределительным шинопроводам или к отдельным крупным ЭП. В некоторых случаях питающая сеть выполняется по схеме БТМ (блок трансформатор – магистраль), (рис 2 б и 3). В этом случае от трансформатора КТП отходит магистральный шинопровод (магистраль), предназначенный для передачи электроэнергии нескольким РШ или нескольким ЭП, присоединённым к магистрали в различных точках. Отдельные приёмники и РШв этом случае присоединяются к магистрали с помощью ответвлений.

2 Распределительные внутрицеховые сети - это сети, к которым непосредственно подключаются различные ЭП цеха. Распределительные сети выполняются с помощью распределительных шинопроводов (ШРА) и распределительных шкафов.

Характерным примером радиальной схемыявляется (рис 2 а). Здесь от секции 1распределительного пункта РП-1 напряжением 6-10 кВ потребители НН через трансформатор получают питание отдельными линиями, отходящими от РУНН подстанции ТП1. Радиальные схемы применяют при наличии групп сосредоточенных нагрузок с неравномерным распределением их по площади цеха, во взрыво- и пожароопасных цехах, в цехах с химически активной и аналогичной средой. Радиальные схемы нашли широкое применение в насосных и компрессорных станциях, на предприятиях нефтехимической промышленности, в литейных и других цехах. Радиальные схемы внутрицеховых сетей выполняют кабелями или изолированными проводами. Они могут быть применены для нагрузок любой категории надёжности.

Достоинства радиальных схем является их высокая надёжность, так как авария на одной линии не влияет на работу ЭП, подключенных к другой линии. Недостатками радиальных схем являются: малая экономичность, связанная со значительным расходом проводникового материала, труб, распределительных шкафов; большое число защитной и коммутационной аппаратуры; ограниченная гибкость сети при перемещениях ЭП, вызванных изменением технологического процесса; невысокая степень индустриализации монтажа.

Магистральные схемы (рис 2 и 3) целесообразно применять для питания силовых и осветительных нагрузок, распределённых относительно равномерно по площади цеха, а также для питания группы ЭП, принадлежащих одной линии. При магистральных схемах одна питающая магистраль обслуживает несколько распределительных шкафов и крупные ЭП цеха.

Одной из разновидностей магистральных схем является схема БТМ (рис 3). В этом случае внутрицеховая сеть упрощается, так как цеховая КТП может быть выполнена без РУНН. Схемы БТМ широко применяются для питания цеховых сетей механических цехов машиностроительных предприятий с поточным производством. Для обеспечения универсальности сети необходимо питающую магистраль 1рассчитать на передачу всей мощности трансформатора, распределительные шинопроводы 2 –на максимальную расчётную нагрузку электроприёмников, расположенных на обслуживаемых шинопроводом участка цеха.

Шинопроводом называется жесткий токопровод заводского изготовления напряжением до 1 кВ, поставляемый комплектными секциями.

Согласно схемы БТМ следует проектировать с числом отходящих от КТП магистральных шинопроводов, не превышающим числа установленных на подстанциях трансформаторов. Магистральный шинопровод присоединяется непосредственно к выводам низкого напряжения трансформатора. Длинна магистральных шинопроводов при их номинальной нагрузке и не должна превышать: 220 м при номинальном токе 1600 А и 180 м при номинальном токе 2500 А. При питании от магистральных шинопроводов одновременно силовых и осветительных нагрузок указанная предельная длинна шинопроводов снижается примерно в 2 раза.

При магистральной схеме ЭП могут быть подключены в любой точке магистрали.

Троллейные линиипредназначены для питания подъёмно-транспортных механизмов цеха.

Достоинствами магистральных схем являются: упрощёние РУНН трансформаторных подстанций, высокая гибкость сети, дающая возможность перестановок технологического оборудования без переделки сети, использование унифицированных элементов (шинопроводов), позволяющих вести монтаж индустриальными методами. Недостатком является их меньшая надёжность по сравнению с радиальными схемами, так как при аварии на магистрали все подключенные к ней ЭП теряют питание. (Однако введение в схему резервных перемычек между ближайшими магистралями значительно повышает надёжность магистральных схем.) Применение шинопроводов постоянного сечения приводит к некоторому перерасходу проводникового материала.

23.      Выбор сечения проводников и жил кабелей напряжением до и выше 1 кВ. Выбор комплектных шинопроводов. Выбор и расчет троллейных линий.

Выбор сечения кабеля и провода

Сечение проводов и кабелей определяют, исходя из допустимого нагрева с учетом нормального и аварийного режимов, а также неравномерного распределения токов между отдельными линиями, поскольку нагрев изменяет физические свойства проводника, повышает его сопротивление, увеличивает бесполезный расход электрической энергии на нагрев токопроводящих частей и сокращает срок службы изоляции. Чрезмерный нагрев опасен для изоляции и контактных соединений и может привести к пожару и взрыву.

Выбор сечения кабеля и провода по нагреву

Выбор сечения из условий допустимого нагрева сводится к пользованию соответствующими таблицами длительно допустимых токовых нагрузок Iд при которых токопроводящие жилы нагреваются до предельно допустимой температуры, установленной практикой так, чтобы предупредить преждевременный износ изоляции, гарантировать надежный контакт в местах соединения проводников и устранить различные аварийные ситуации, что наблюдается при Iд ≥ Ip, Ip - расчетный ток нагрузки.

Периодические нагрузки повторно-кратковременного режима при выборе сечения кабеля пересчитывают на приведенный длительный ток

При выборе сечения проводов и кабелей следует иметь в виду, что при одинаковой температуре нагрева допустимая плотность тока токопроводящих жил большего сечения должна быть меньше, так как увеличение сечения их происходит в большей степени, чем растет охлаждающая поверхность (смотрите рис. 1). По этой причине часто с целью экономии цветных металлов вместо одного кабеля большего сечения выбирают два или несколько кабелей меньшего сечения.

График зависимости допустимой плотности тока от сечения медных жил открыто проложенного трехжильного кабеля на напряжение 6 кВ с бумажной пропитанной изоляцией, нагретых током до температуры +65°С при температуре воздуха +25

окончательном выборе селения проводов и кабелей из условия допустимого нагрева по соответствующим таблицам необходимо учитывать не только расчетный ток линии, но и способ прокладки ее, материал проводников и температуру окружающей среды.

Кабельные линии на напряжение выше 1000 В, выбранные по условиям допустимого нагрева длительным током, проверяют еще на нагрев токами короткого замыкания. В случае превышения температуры медных и алюминиевых жил кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ свыше 200 °С, а кабелей на напряжения 35 - 220 кВ свыше 125 °С сечение их соответственно увеличивают.

Сечение жил проводов и кабелей сетей внутреннего электроснабжения напряжением до 1000 В согласуют с коммутационными возможностями аппаратов защиты линий - плавких предохранителей и автоматических выключателей - так, чтобы оправдывалось неравенство Iд / Iз з, где kз - кратность допустимого длительного тока проводника по отношению к номинальному току или току срабатывания аппарата защиты Iз (из ПУЭ). Несоблюдение приведенного неравенства вынуждает выбранное сечение жил соответственно увеличить.

Выбор сечения кабелей и проводов по потере напряжения

Сечение кабелей и проводов, выбранное из условий нагрева и согласованное о коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения.

Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %.

В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12.,.42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения.

Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.

Расчет потери напряжения в трехфазной трехпроходной линии при выборе сечения кабелей и проводов

Проверку сечения проводников трехфазной трехпроводной линии с одной нагрузкой в конце ее (рис. 2, а), характеризуемой расчетным током Ip и коэффициентом мощности cos фи на относительную линейную потерю напряжения, выполняют так:

Для неразветвленной магистральной трехфазной трехпроводной линии постоянного сечения, несущей распределенные вдоль нее нагрузки с расчетными токами Ip1, Iр2, ..., Iр и соответствующими коэффициентами мощности cos фи1, cos фи2, ..., cos фи, удаленными от источника питания на расстояния L1, L2, ..., Ln (рис. 2, б), относительная линейная потеря напряжения до наиболее удаленного приемника:

Если расчетная относительная потеря напряжения dU получится выше допустимой нормами, приходится выбранное сечение увеличить с тем, чтобы обеспечить нормируемое значение этой величины.

При небольших сечениях проводов и кабелей индуктивным сопротивлением Хо можно пренебречь, что существенно упрощает соответствующие вычисления. в трехфазных трехпроводных распределительных сетях наружного освещения отличающихся значительной протяженностью, следует обращать внимание на правильное включение равноудаленных светильников, ибо в противном случае потери напряжения распределяются по фазам неравномерно и могут достигнуть нескольких десятков процентов по отношению к номинальному напряжению.

Выбор сечения кабеля по экономической плотности тока

Выбор сечения проводов и кабелей без учета экономических факторов может привести к значительным потерям электрической энергии в линиях и существенному возрастанию эксплуатационных расходов. По этой причине сечение проводников электрических сетей внутреннего электроснабжения значительной протяженности, а также сетей, работающих с большим числом часов использования максимума нагрузки -Tmax > 4000 ч - должно быть не менее отвечающего рекомендованной экономической плотности тока, устанавливающей оптимальное соотношение между капитальными затратами и эксплуатационными расходами, которое определяют так:

Расчетное экономическое сечение округляют до ближайшего стандартного и, если оно окажется свыше 150 мм2, одну кабельную линию заменяют двумя или несколькими кабелями с суммарным сечением, соответствующим экономическому. Применять кабели с малоизменяющейся нагрузкой сечением менее 50 мм2 не рекомендуется.

Сечение кабелей и проводов напряжением до 1000 В при числе часов использования максимума нагрузки Tmax < 4000...5000 ч и все ответвления к приемникам того же напряжения, электрических сетей осветительных установок, временных сооружений и сооружении с малым сроком службы до 3 - 5 лет по экономической плотности тока не выбирают.

В трехфазных четырехпроходных сетях сечение нейтрального провода не рассчитывают, а принимают не менее 50% от сечения, выбранного для главных проводов, а в сетях, питающих газоразрядные лампы, вызывающие появление высших гармоник тока, такое же, как и главных проводов.

Наибольшее распространение шинопроводы получили в установках до 1 000 В в виде комплектных магистральных или распределительных линий. Наряду с этим в устройствах 6, 10, 35 кВ кабельные и обычные шинные магистрали также стали заменяться комплектными шинопроводами. Их устанавливают на электростанциях (в блоке генератор—трансформатор), на крупных подстанциях (в качестве шинных магистралей), на промпредприятиях (для питания энергоемких установок) и др.

Конструктивно шинопроводы различают по материалу шин, их профилю и расположению, типу изоляторов, способу защиты от окружающей среды. Широкое разнообразие их конструкций можно разбить на два вида: с жесткими изолированными и неизолированными шинами на опорных изоляторах; с гибкими шинами на подвесных изоляторах. Шинопроводы с жесткими шинами изготавливают как открытыми, так и в защитном кожухе.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 514.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...