Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Усилители переменного напряжения




В усилителях переменного напряжения ООС по постоянному току, как правило, выполняется 100 %-й. Так, в схеме (рис. 8.28, а)коэффициент передачи по постоянному току равен единице, а по переменному:

К = 1 + R2 / R1.

Входное сопротивление в данном усилителе очень большое, так как здесь осуществляется компенсация входного тока:

Rвх = R3Ky  / K.

При R2 = 0 схема (рис. 8.28, а) преобразуется в повторитель напряжения с высоким входным сопротивлением (рис. 8.28, б).

В усилителях переменного напряжения целесообразно использовать только один источник питания положительной или отрицательной полярности. Однако при этом на входе ОУ необходимо включать цепь для формирования напряжения смещения, с помощью которой на выходе ОУ устанавливается напряжение, равное половине напряжения питания.

Так, в схеме (рис.8.29, а) напряжение смещения формируется делителем напряжения R3, R4, при этом R3 = R4. Коэффициент передачи для данной схемы при xс1 << R1 равен:

К = R2/R1.

Конденсатор С2 предназначен для подавления пульсаций. В схеме (рис. 8.29, б) напряжение смещения формируется делителем R1, R4. Для данной схемы при xc1 << R3 и хс2 << R1||R4 коэффициент передачи равен:

К = 1+R2 /(R1||R4).


В рассмотренных схемах используется емкостная развязка входных цепей. Очевидно, что при подключении входного сигнала разделительный конденсатор С1 будет заряжаться с постоянной времени τ = R1C1 (рис. 8.29, a), что обусловливает большое время установления номинального режима работы ОУ.

 



УСТРОЙСТВА СРАВНЕНИЯ АНАЛОГОВЫХ СИГНАЛОВ

Компараторы

Выходное напряжение усилителя ограничено величиной ±Uвых max. Поскольку коэффициент усиления операционного усилителя (КU оу) велик, то значение выходного напряжения (Uвых = ±Uвых max)  достигается при очень малых входных напряжениях:

Uвх= ±Uвых max / KU оу.

Поэтому можно считать.

То есть операционный усилитель является схемой сравнения входных сигналов – компаратором.

Компараторы представляют собой устройства, предназначенные для сравнения по уровню двух входных напряжений и скачкообразного изменения выходного напряжения в случае, когда одно из сравниваемых напряжений больше другого.

Компаратор должен иметь низкое напряжение сдвига, низкий дрейф напряжения сдвига, устойчиво работать без самовозбуждения и иметь низкое значение тока смещения. Один вход компаратора (рис. 9.1) соединен с источником опорного напряжения, а на другой подается входной сигнал. Когда Uвх подается на инвертирующий вход и Uоп > 0, выходное напряжение будет отрицательным при Uвх > Uоп, и положительным при Uвх < Uоп.


Когда входной сигнал в процессе изменения становится больше опорного, то выход компаратора немедленно изменяет свое состояние (рис. 9.2).

Если, например, изменение выходного напряжения составляет 5 В, а коэффициент усиления компаратора равен 100 000, то разность входного и опорного напряжений (Uвх – Uоп.), вызывающая изменение выходного напряжения, будет равна:  

 мВ,

то есть сравнение двух уровней напряжения осуществляется с высокой точностью. Но эта схема обладает существенным недостатком: если входной сигнал изменяется медленно и его величина близка к Uоп, то шумы, содержащиеся в Uвх, могут вызвать ложные срабатывания (рис. 9.3).

 


Более устойчивым к действиям помех является компаратор, в котором ОУ охвачен положительной обратной связью (ПОС), осуществляемой по неинвертирующему входу с помощью резисторов  и  (рис.9.3, а ). Такой компаратор обладает передаточной характеристикой с гистерезисом (рис. 9.3, б ). Схема известна под названием триггера Шмита или порогового устройства.

Переключение схемы (рис. 9.4) в состояние -Uвых.max происходит при достижении Uвх напряжения (порога) срабатывания (Uср), а возвращение в исходное состояние
(Uвых = +Uвых.max) происходит при снижении Uвх до напряжения (порога) отпускания
(-Uотп). Значения пороговых напряжений находят по схеме, положив U0 = 0:

;

.

Частным случаем схемы (см. рис. 9.4) при  = 0 является схема (рис. 9.5). Ее пороговые напряжения и зона гистерезиса (рис. 9.6) составляют:

; ; .


Величина гистерезиса (зоны нечувствительности) определяется пороговыми напряжениями. Выбирая необходимые значения пороговых напряжений  и , можно изменять «зону нечувствительности» компаратора в зависимости от уровня помех (рис. 9.6).

Компаратор с ПОС может использоваться в качестве формирователя прямоугольных импульсов из напряжения произвольной формы.


4.2. Мультивибратор

Схема симметричного мультивибратора на ОУ в автоколебательном режиме, представляющего собой генератор прямоугольных импульсов (рис. 9.7, а) содержит как цепь отрицательной ОС на элементах , С, так и цепь положительной ОС, образованную делителем R1, R2.

В момент подключения к схеме напряжения питания на инвертирующий вход ОУ поступает напряжение , так как конденсатор С не успевает зарядиться, а на неинвертирующий вход с делителя R1, R2 поступает напряжение


.

Так как усилитель охвачен цепью безинерционной ПОС, а напряжение на его инвертирующем входе равно нулю, на выходе ОУ равновероятно может установиться любое из его максимально возможных напряжений. 

Пусть Uвых.max > 0, тогда и U2> 0 . При этом конденсатор С (рис. 9.7, б) начнет заряжаться через резистор  током  (интервал времени 0 – ), стремясь зарядиться до напряжения +Uвых.max. В момент времени  напряжение на конденсаторе достигнет уровня +U2, а затем несколько превысит его (на доли милливольт), то есть напряжение на инвертирующем входе ОУ окажется больше, чем на неинвертирующем.

Выходное напряжение при этом скачком изменяет свою полярность, делаясь равным -Uвых.max, после чего начинается перезаряд конденсатора током I2 противоположного направления. Как только конденсатор С зарядится до напряжения -U2 (момент времени t2) полярность выходного напряжения вновь скачком изменится, то есть станет положительной. Затем начинается перезаряд конденсатора С током I1, и процесс повторяется.

Таким образом, схема генерирует последовательность импульсов со скважностью 2 и полным размахом выходного напряжения 2·Uвых.max. Длительность выходного импульса равна:

.

Рис. 9.5. Схема компаратора с положительной обратной связью и нулевым опорным напряжением (а) и его передаточная характеристика (б)





КОНТРОЛЬНАЯ РАБОТА 1

Вариант задания соответствует сумме двух последних цифр учебного шифра студенческого билета.

Перед выполнением контрольной работы необходимо изучить теоретический материал.

Ответы на теоретические вопросы должны быть ясными, сформулированными самостоятельно. В процессе расчета каждого параметра необходимо сначала привести его расчетную формулу, затем подставить числовые значения и записать ответ, указывая единицы полученной величины. При расчетах сопротивлений резисторов или емкостей конденсаторов необходимо полученные значения округлять до ближайших стандартных значений. Схемы и графики выполняются карандашом с использованием чертежных инструментов в соответствии с принятыми стандартными требованиями.

Задание

Выполнить расчет усилительного каскада с общим эмиттером.


Исходные данные для расчёта:

1. напряжение на выходе каскада ;

2. сопротивление нагрузки ;

3. нижняя граничная частота ;

4. допустимое значение коэффициента частотных искажений каскада в области низких частот .

Объяснить:

1) назначение элементов и принцип работы усилителя на транзисторе, включенного по схеме с ОЭ;

2) причины нестабильности параметров транзисторных усилителей.

Определить:

1) сопротивление коллекторной нагрузки ;

2) сопротивление в цепи эмиттера ;

3) напряжение источника питания ;

4) тип транзистора;

5) режим работы транзистора;

6) сопротивления делителя напряжения  и , стабилизирующие режим работы транзистора;

7) коэффициент усиления каскада по напряжению ;

8) коэффициент усиления каскада по току ;

9) коэффициент усиления каскада по мощности ;

10) входное  и выходное  сопротивления;

11) ёмкости разделительных конденсаторов  и ;

12) ёмкость конденсатора в цепи эмиттера .

ВАРИАНТЫ ЗАДАНИЙ










Последнее изменение этой страницы: 2018-04-12; просмотров: 728.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...