Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Способы изображения синусоидальных функций времени




 

Синусоидальные функции времени могут быть представлены тригонометрической формой записи, временными диаграммами, вращающимися векторами и комплексными числами.

Тригонометрическая форма записи тока, изменяющегося во времени по синусоидальному закону, может быть представлена выражением

 

,          (1.14)

 

где  - мгновенное значение тока;  - максимальное (амплитудное) значение тока;  - угловая частота, характеризующая скорость изменения фазового угла;  - текущее значение времени; - начальная фаза (начальный фазовый угол).

Геометрический смысл параметров, входящих в выражение (1.14), раскрывает временная диаграмма,представленная на рис.1.2 б. а                                         б

 

Рис. 1.2

 

Переход от временных диаграмм к вращающимся векторам для различных моментов времени показан на рис. 1.2 а, б. Очевидно, что вектор длиной  вращается с постоянной угловой частотой . При этом за положительное направление вращения в электротехнике принимается направление против хода часовой стрелки. Проекция вращающегося вектора на ось ординат определяет мгновенное значение синусоидального тока.

В электротехнике, кроме мгновенных и максимальных значений синусоидальных величин, используются средние и действующие значения. Именно эти значения показывают большинство измерительных приборов, поэтому условимся, что далее в расчетах будут использоваться только действующие значениясинусоидальных электродвижущих сил (ЭДС), напряжений и токов.

Действующие значения синусоидальных ЭДС, напряжений и токов могут быть определены на основании максимальных значений с помощью следующих выражений:

 

. (1.15)

 

На рис.1.2 а показано, что длина вращающегося вектора равна амплитудному значению синусоидальной величины. Однако следует отметить, что вращающиеся векторы могут иметь длину, равную действующему значению.

 

1.5. Метод комплексных чисел. Законы электрических цепей вкомплексной форме

 

Метод комплексных чисел нашел широкое применение в электротехнике при расчетах электрических цепей синусоидального переменного тока. При этом в качестве векторов на комплексной плоскости изображаются синусоидальные функции времени (ЭДС, напряжения и токи).

Сущность расчета электрических цепей с помощью данного метода заключается в том, что графические операции над векторами заменяют алгебраическими действиями над комплексными числами.

В электротехнике, чтобы избежать сходства мнимой единицы iс силой тока, мнимую единицу обозначают буквой j.

При использовании метода комплексных чисел уравнения электрических цепей записывают на основании законов Ома и Кирхгофа.

Математическое выражение закона Ома в комплексной форме имеет вид

 

,                   (1.16)

 

где  - комплекс действующего значения силы тока (комплекс тока);  - комплекс действующего значения напряжения, приложенного к цепи (комплекс напряжения);  - полное комплексное сопротивление.

Отличие обозначения комплексного сопротивления  от обозначения комплексных напряжения  и тока  связано с тем, что комплексное сопротивление не является синусоидальной функцией времени.

Математическое выражение первого закона Кирхгофа в комплексной форме имеет вид

 

,               (1.17)

 

где k – число комплексных токов, сходящихся в узле электрической цепи.

В соответствии с (1.17) сумма комплексных токов, сходящихся в узле электрической цепи, равна нулю.

Математическое выражение второго закона Кирхгофа в комплексной форме имеет вид:

 

,              (1.18)

 

где k – число комплексных напряжений вдоль замкнутого контура.

В соответствии с (1.18) сумма комплексных напряжений вдоль любого замкнутого контура равна нулю.

 

1.6. Понятие о полном комплексном сопротивлении

Составными элементами цепей синусоидального тока являются активное сопротивление R, индуктивность L и емкость C. Каждый из этих элементов оказывает сопротивление переменному току.

На активном сопротивлении R энергия электрического тока преобразуется в тепловую энергию. Такое преобразование является необратимым.

На индуктивности L происходит периодическое преобразование энергии электрического тока в энергию магнитного поля, накопление и обратное преобразование.

На емкости С происходит периодическое преобразование энергии электрического тока в энергию электрического заряда, накопление и обратное преобразование.

Поскольку процессы в индуктивности и емкости являются обратимыми, то эти элементы называют реактивными.

Индуктивность обладает реактивным сопротивлением, которое называют индуктивным сопротивлением

 

        (1.19)

 

где f – частота переменного синусоидального напряжения, Гц; L – индуктивность, Гн.

Конденсатор обладает реактивным сопротивлением, которое называют емкостным сопротивлением

     (1.20)

 

где С – емкость, Ф.

Если элементы R, L, C соединены последовательно, то полное комплексное сопротивление можем записать в виде

 

. (1.21)

 

В соответствии с (1.21) очевидно, что полное комплексное сопротивление имеет действительную и мнимую части:

 

   (1.22)

 

где R – активное сопротивление; X – реактивное сопротивление.

В (1.22) знак «плюс» перед  ставится, если , в противном случае ставится знак «минус».

 

1.7. Угол сдвига фаз. Векторная диаграмма

 

Токи и напряжения на различных участках электрической цепи синусоидального тока могут не совпадать по фазе, например:

 

;           (1.23)

,         (1.24)

 

где - начальная фаза тока; - начальная фаза напряжения.

Тогда угол сдвига фаз между током и напряжением определяют как разность их начальных фаз

 

.                        (1.25)

 

Угол сдвига фаз между током и напряжением на некотором участке электрической цепи зависит от характера сопротивления данного участка и определяется по формуле:

 

.            (1.26)

 

Наглядное представление о фазовом расположении различных векторов дает векторная диаграмма токов и напряжений.

Векторная диаграмма – это совокупность векторов на комплексной плоскости, изображающих синусоидальные функции времени одной и той же частоты и построенных с соблюдением их начальных фаз.

Поскольку расчет электрических цепей синусоидального переменного тока ведется, как правило, с использованием метода комплексных чисел, то и векторные диаграммы также строятся на комплексной плоскости.

Векторные диаграммы чаще всего выполняют совмещенными, то есть на одной комплексной плоскости откладывают векторы токов и напряжений для отдельных участков цепи. При этом необходимо выбрать масштабы для токов и напряжений. Следует отметить, что для токов может быть выбран один масштаб, а для напряжений – другой. Это никоим образом не искажает общей картины, поскольку векторная диаграмма дает представление о взаимном расположении векторов и позволяет судить о наличии сдвига фаз между током и напряжением на отдельных участках электрической цепи.

Из курса высшей математики известно, что над векторами можно производить следующие действия: сложение, вычитание, умножение на число и деление на число.

В электротехнике принято с помощью векторной диаграммы складывать или вычитать векторы. Очевидно, что эти действия можно производить над векторами, имеющими одинаковую размерность.

На рис. 1.3 а показано сложение двух комплексных токов ,  по правилу параллелограмма. Результатом сложения является комплексный ток . На рис. 1.3 б показано вычитание комплексного напряжения  из комплексного напряжения , в результате чего получаем комплексное напряжение .

 

 

а                                                     б

Рис. 1.3

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 195.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...