Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Источники света производственного освещения




 

Источниками света при искусственном освещении являются газоразрядные лампы и лампы накаливания.

Газоразрядные лампы предпочтительные для применения в системах искусственного освещения. Они имеют высокую световую отдачу (до 100 лм/Вт) и большой срок службы (10000…14000 ч). Световой поток от газоразрядных ламп по спектральному составу близок к естественному освещению и поэтому более благоприятен для зрения. Однако газоразрядные лампы имеют существенные недостатки, к числу которых относится пульсация светового потока. При рассмотрении быстро движущихся или вращающихся деталей в пульсирующем световом потоке возникает стробоскопический эффект, который проявляется в искажении зрительного восприятия объектов (вместо одного предмета видны изображения нескольких, искажаются направление и скорость движения). Это явление ведет к увеличению опасности производственного травматизма и делает невозможным выполнение некоторых производственных операций.

В системах производственного освещения применяют люминесцентные газоразрядные лампы, имеющие форму цилиндрической стеклянной трубки. Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение газового электрического разряда в видимый свет. Люминисцентные газоразрядные лампы в зависимости от применяемого в них люминофора создают различный спектральный состав света. Различают несколько типов ламп: дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛДЦ), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого света (ЛБ).

Кроме люминесцентных газоразрядных ламп (низкого давления), в производственном освещении применяют газоразрядные лампы высокого давления: лампы ДРЛ (дуговые ртутные люминисцентные); галогенные лампы ДРИ (дуговые ртутные с йодидами); ксеноновые лампы ЛКсТ (дуговые ксеноновые трубчатые), которые в основном применяются для освещения территорий предприятия; натриевые лампы ДНаТ (дуговые натриевые трубчатые), используемые для освещения цехов с большой высотой (в частности, многих литейных цехов).

Применяются для освещения производственных помещений также лампы накаливания, в которых свечение возникает путем нагревания нити накала до высоких температур. Они просты и надежны в эксплуатации. Недостатками их являются низкая световая отдача (не более 20 лм/Вт), ограниченный срок службы (до 1000 ч), преобладание излучения в желто-красной части спектра, что искажает цветовое восприятие. В осветительных системах используют лампы накаливания различных типов: вакуумные (НВ), газонаполненные биспиральные (НБ), биспиральные с криптоноксеноновым наполнением (НБК), зеркальные с диффузно отражающим слоем и др. Все большее распространение получают лампы накаливания с йодным циклом – галоидные лампы, которые имеют лучший спектральный состав света и хорошие экономические характеристики.

Эксплуатация осветительных установок. Качественные показатели освещения в производственных помещениях во многом определяются правильным выбором светильников, представляющих собой совокупность источника света и осветительной арматуры. Основное назначение светильников заключается в перераспределении светового потока источников света в требуемых для освещения направлениях, механическом креплении источников света и подводе к ним электроэнергии, а также защите ламп, оптических и электрических элементов от воздействия окружающей среды.

Важной характеристикой светильника является коэффициент полезного действия – отношение светового потока светильника к световому потоку лампы, помещенной в светильник.

Устранение слепящего действия источника света обеспечивается конструкцией светильника и характеризуется защитным углом, т.е. углом между горизонталью и линией, касательной к светящемуся телу лампы и краю отражателя.

По конструктивному исполнению светильники делятся: на открытые, защищенные закрытые, пыленепроницаемые, влагозащищенные, взрывозащищенные и взрывобезопасные. По распределению светового потока в пространстве светильники бывают прямого, преимущественно прямого, рассеянного и отраженного света.

 

Гигиеническое нормирование искусственного и естественного освещения

 

Нормируемыми параметрами для систем искусственного освещения являются: величина минимальной освещенности Еmin, допустимая яркость в поле зрения Lдоп, а также показатель ослепленности Р и коэффициент пульсации Кп (СНиП 23-05-95).

Величина минимальной освещенности задается для наиболее темного участка рабочей поверхности. Под рабочей поверхностью понимается условная горизонтальная плоскость, расположенная на расстоянии 0,8 м от уровня пола производственного помещения.

Нормируемое значение Еmin выбирается в зависимости от точности зрительной работы, коэффициента отражения рабочей поверхности, продолжительности напряженной зрительной работы в общем бюджете времени, характеристики качества освещения и технико-экономических показателей применяемой системы освещения.

Степень точности зрительных работ определяется в угловых минутах, группируются по их линейным размерам, расстояние от объекта до глаза принимается равным 0,35…0,5 м. Этот позволяет линейный размер 0,1 м принять эквивалентным угловому размеру в одну угловую минуту. Объекты различения классифицируются по размерам на шесть разрядов: от I наивысшей точности (<0,15 мм) до VI – грубые работы (>5 мм). Последние VII, VIII, IX разряды не учитывают размеры объекта различения, поскольку к ним относятся работы, требующие общего наблюдения за ходом производственного процесса, а также работа с самосветящимися объектами.

Контраст объекта с фоном К принято считать малым, если К<0,2, средним при 0,2< К≤0,5 и большим при К>0,5. Рабочие поверхности, являющиеся фоном, на котором объект зрительно обнаруживается и опознается, классифицируют по значению коэффициента отражения ρ: если ρ<0,2 – фон считается темным; если 0,2< ρ≤0,4 – средним; при ρ>0,4 – светлым.

Если работа связана с повышенной опасностью травматизма, размещения деталей на движущихся поверхностях и напряженная зрительная работа проводится непрерывно в течение рабочего дня или различаемые объекты расположены от глаз далее чем на 0,5 м, то нормы освещенности повышаются на одну степень согласно специальной шкале освещенностей.

Для систем естественного освещения нормируемым параметром является коэффициент естественного освещения КЕО, ен %. КЕО – отношение измеренной в данной точке рабочей поверхности освещенности (внутри помещения) к значению освещенности, измеренной на горизонтальной площадке в точке, расположенной вне производственного здания и освещенной рассеянным светом всего купола небосвода.

 

Глава 7. Лазерное излучение










Последнее изменение этой страницы: 2018-04-12; просмотров: 256.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...