Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Хромосомные мутации, их классификация. Причины и механизмы возникновения перестроек (аберраций) хромосом. Роль хромосомных мутаций в развитии наследственных заболеваний.




Хромосомные мутации - тип мутаций, которые изменяют структуру хромосом.

Классификация

А. Изменения в структуре хромосом. Такие изменения могут затрагивать число генов в хромосомах (делеции и дупликации) и локализацию генов в хромосомах (инверсии и транслокации).

1. Делеция , или нехватка. Утрачен участок хромосомы.

2. Дупликация , или удвоение. Один из участков хромосомы представлен в хромосомном наборе более одного раза.

3. Инверсия . В одном из участков хромосомы гены расположены в последовательности, обратной по сравнению с нормальной

4. Транслокация . Изменено положение какого-либо участка хромосомы в хромосомном наборе

Б. Изменения в числе хромосом. При изменениях такого рода в одних случаях (слияния и разрывы) общее количество наследственного материала остается неизменным, а в других (анеуплоидия, моноплоидия и полиплоидия) – изменяется.

1. Центрическое слияние . Две негомологичные хромосомы сливаются в одну.

2. Центрическое разделение . Одна хромосома делится на две, при этом должна образоваться новая центромера, в противном случае хромосома без центромеры утрачивается при клеточном делении.

3. Анеуплоидия . В нормальном хромосомном наборе либо отсутствует одна и более хромосом, либо присутствует одна или более добавочных хромосом.

4. Моноплоидия и полиплоидия . Число наборов негомологичных хромосом отличается от двух

Механизм возникновения

В основе изменения структуры хромосом, лежит первоначальное нарушение ее целостности - разрывы, которые, сопровождаются различными перестройками, называемые хромосомные мутации или аберрации. Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологичными хромосомами. Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делеция - или удваиваются - дупликация. При таких перестройках меняется число генов в группе сцепления.

Геномные мутации, причины и механизмы их возникновения. Роль геномных мутаций в развитии наследственных заболеваний.

Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом

Классификация

1. Полиплоидия – кратное увеличение гаплоидного набора хромосом

2. Анеуплоидия - потеря или добавление одного или нескольких хромосом

3.Гаплоидия – уменьшение диплоидного набора хромосом в 2 раза

Закономерности наследования признаков при моногибридном скрещивании. 1, 2 законы Менделя. Закон чистоты гамет.

Моногибридное скрещивание — скрещивание форм, отличающихся друг от друга по одной паре изучаемых альтернативных признаков, за которые отвечают аллели одного гена.

1 закон Менделя (закон единообразия)

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

2 закон Менделя (закон расщепления)

Второй закон Менделя - при скрещивании двух гетерозиготных потомков первого поколения между собой, во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Закон чистоты гамет

В каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

 

Закономерности наследования признаков при дигибридном скрещивании. 3 закон Менделя. Закон чистоты гамет.

Дигибридное скрещивание - скрещивание организмов, различающихся по двум парам альтернативных признаков

Закон независимого наследования (третий закон Менделя) — при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Закон чистоты гамет

В каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

31.     Закономерности наследования признаков при взаимодействии между аллельными генами (неполное доминирование, множественный аллелизм).

Аллельные гены - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака.

Неполное доминирование - это наследование, при котором доминантный ген не полностью подавляет рецессивный, в этом случае гибриды первого поколения имеют промежуточный признак, то есть имеет место промежуточный характер наследования, например, наследование окраски цветков у ночной красавицы, или голубого оперения у кур, окраска шерсти у крупного рогатого скота и др.

Множественный аллелизм - это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.

Закономерности наследования признаков при взаимодействии между неаллельными генами (комплементарность, полимерия, эпистаз).

Комплементарность - форма взаимодействия неаллельных генов, при котором одновременное действие нескольких доминантных генов дает новый признак.

Полимерия - взаимодействие неаллельных множественных генов, однонаправленно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Эписта́з — взаимодействие генов, при котором активность одного гена находится под влиянием другого гена (генов), неаллельного ему. Ген, подавляющий фенотипические проявления другого, называется эпистатичным; ген, чья активность изменена или подавлена, называется гипостатичным.

Закономерности наследования признаков при сцепленном наследовании. Основные положения хромосомной теории наследственности.

· Гены находятся в хромосомах.

· Гены расположены в хромосоме в линейной последовательности.

· Различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

· Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

· Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

· Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

· Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 933.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...