Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Определение жизни. Фундаментальные свойства живого. Информационные потоки жизни, их роль в проявлении свойств живого




Определение биологии как науки. Предмет и методы биологии . Человек как объект биологии. Биосоциальная природа человека.

Биология — наука о жизни. Она изучает жизнь как особую форму движения материи, законы ее существования и развития.

Термин биология, предложенный в 1802 г. Ж.Б. Ламарком, происходит от двух греческих слов: bios — жизнь и logos — наука. Биология относится к числу естественных наук.

 

Современная биология представляет собой систему наук о живой природе. Общие закономерности развития живой природы, раскрывающие сущность жизни, ее формы и развитие, рассматривает общая биология. Предметом изучения биологии являются живые организмы; их строение, функции; их природные сообщества. Соответственно объектам изучения — животным, растениям, вирусам — существуют специальные науки, изучающие каждую из названных групп организмов.

 

Методы :

 

Описательный

 

Для того, чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ранний период развития биологии , который, однако, не утратил значения и в настоящее время.

 

Сравнительный.

 

Еще в XVIII в. получил распространение сравнительный метод, позволяющий путем сопоставления изучать сходство и различие организмов и их частей. На принципах этого метода была основана систематика и сделано одно из крупнейших обобщений — создана клеточная теория.

 

Исторический

 

Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функций. Утверждением в биологии исторического метода наука обязана Ч. Дарвину.

 

Экспериментальный

 

метод исследования явлений природы связан с активным воздействием на них путем постановки опытов экспериментов в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении тех же условий. Эксперимент обеспечивает не только более глубокое, чем другие методы, проникновение в сущность явлений, но и непосредственное овладение ими. Высшей формой эксперимента является моделирование изучаемых процессов. Блестящий экспериментатор И.П. Павлов говорил: Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет.

 

Биосоциальная природа человека.

 

Человек — живой организм в этом отношении он является объектом биологических исследований. Но он,в то же время существо социальное. Поэтому, если у любых видов растений и животных эволюция осуществляется по биологическим законам, то прогресс человечества подчиняется социальным закономерностям.Но вся социально-трудовая сущность человека передается посредством обучения, воспитывается в человеческом коллективе, а это оказывает влияние на реализацию генетических особенностей каждого индивидуума, отражается на формировании его личности.

2)

Биология – основа фундаментальной медицины. Роль биологических открытий в развитии теоретической и практической медицины. Современные направления фундаментальной биологии и их значение для медицины

Биология – основа фундаментальной медицины

В системе медицинского образования изучение биологии определяется тем, что биология - это теоретическая основа медицины. Поскольку человек является частью живой природы, закономерности строения и функционирования живых организмов распространяются на процессы жизнедеятельности человека в норме и патологии.

"Медицина, взятая в плане теории, - это, прежде всего, общая биология", - писал один из крупнейших теоретиков медицины И.В. Давыдовский. Во всех медицинских науках используются фундаментальные знания об общебиологических закономерностях развития, строения и жизнедеятельности человека.

Успехи медицины тесно связаны с биологическими исследованиями, поэтому врач должен быть осведомлен о новейших достижениях в области современной биологии. Достаточно привести несколько примеров из истории науки, чтобы показать тесную связь успехов медицины с открытиями, сделанными в области биологии.

Исследования Л. Пастера(1822-1895 гг.), доказавшие невозможность самопроизвольного зарождения жизни в современных условиях, открытие того факта, что гниение и брожение вызываются микроорганизмами, произвели переворот в медицине и обеспечили развитие хирургии. В практику были введены антисептика (предупреждение заражения раны посредством химических веществ) и асептика (предупреждение загрязнения путем стерилизации предметов, соприкасающихся с раной). Это открытие послужило стимулом к поискам возбудителей инфекционных болезней и разработке мер по профилактике и лечению инфекционных болезней.

Изучение И.И. Мечниковым процессов пищеварения у низших многоклеточных организмов способствовало формированию знаний о механизмах клеточного иммунитета.

Появление клеточной теории позволили глубже понять причины возникновения болезни и способствовали разработке методов ее диагностики и лечения. Разрабатывая дальше клеточную теорию, Р. Вирхов создал концепцию клеточной патологии (1858 г.), которая определила главные пути развития медицины на долгое время. Объясняя течение патологических состояний структурно-химическими изменениями на клеточном уровне, эта концепция способствовала появлению патологической анатомии.

Филогенетический принцип, основанный на теории эволюции органического мира, определил возможность создания живых моделей для изучения болезней и для испытания новых лекарственных препаратов. Этот метод помогает найти правильное решение при выборе тканей для трансплантации, понять происхождение патологии, найти наиболее рациональные пути реконструкции органа и т. д.

Открытие модели строения молекулы ДНК Дж. Уотсоном и Ф. Криком (1953 г.) явилось ключевым этапом развития молекулярной биологии и определилоприоритетныенаправления современной медицины в поисках путей профилактики, диагностики и лечении болезней человека.

Развитие получили методы генетической инженерии, а на ее основе биотехнологии и генной коррекции наследственных болезней. Создание рекомбинантных молекул ДНК, определило возможность получения в промышленных масштабах гормонов (инсулина, соматотропина), антибиотиков и биологически активных веществ. Появились новые методы ДНК-диагностики наследственных болезней, а также вирусных и протозойных инфекций.

Завершение Международного проекта «Геном человека» (2003 г) открывает новые перспективы в области молекулярной диагностики и создании новых методов лечения наследственных болезней.

 

2.3Биологические науки[править | править исходный текст]

Сюда перенаправляется запрос «Биологические науки». На эту тему нужна отдельная статья.

Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов:

 

ботаника изучает растения,

зоология — животных,

микробиология — микроорганизмы.

Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам:

 

биохимия изучает химические основы жизни,

молекулярная биология — сложные взаимодействия между биологическими молекулами,

клеточная биология и цитология — основные строительные блоки многоклеточных организмов, клетки,

гистология и анатомия — строение тканей и организма из отдельных органов и тканей,

физиология — физические и химические функции органов и тканей,

этология — поведение живых существ,

экология — взаимозависимость различных организмов и их среды,

генетика — передачу наследственной информации,

биология развития — развитие организма в онтогенезе,

палеобиология и эволюционная биология — зарождение и историческое развитие живой природы.

3)

Определение жизни. Фундаментальные свойства живого. Информационные потоки жизни, их роль в проявлении свойств живого

Жизнь — активная форма существования материи, в некотором смысле высшая по сравнению с её физической и химической формами существования; совокупность физических и химических процессов, протекающих в клетке, позволяющих осуществлять обмен веществ и её деление.

 

Фундаментальные свойства живого:

 

1) Самообновление - связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции и диссимиляции. В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепле­ние органических соединений, обеспечивает клетку пластиче­ским веществом и энергией.

 

2) Самовоспроизведение - обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот.

 

3) саморегуляция - базируется на совокупности потоков вещества, энергии и информации через живой организм;

 

4) раздражимость - связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходи­мое для своего существования.

 

5) поддержание гомеостаза (от гр. homoios — «подобный, одинаковый» и stasis — «неподвижность, состояние») — отно­сительного динамического постоянства внутренней среды ор­ганизма, физико-химических параметров существования системы;

 

6) структурная организация — определенная упорядочен­ность, стройность живой системы. Обнаруживается при на­следовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой биогеоценозов;

 

7) адаптация — способность живого организма постоянно приспосабливаться к изменяющимся условиям существовании в окружающей среде. В ее основе лежат раздражимость и ха­рактерные для нее адекватные ответные реакции;

 

8) репродукция (воспроизведение). Так как жизнь существу­ет в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго огра­ничено во времени, поддержание жизни на 'Земле связано с ре­продукцией живых систем. На молекулярном уровне воспроиз­ведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

 

9) наследственность - обеспечивает преемственность между поколениями организмов (на основе потоков информации).

 

10) изменчивость — свойство, противоположное наследствен­ности. За счет изменчивости живая система приобретает приз­наки, ранее ей несвойственные. В первую очередь измен­чивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естествен­ным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эво­люции;

 

11) индивидуальное развитие (процесс онтогенеза) — воплоще­ние исходной генетической информации, заложенной в структу­ре молекул ДНК (т. е. в генотипе), в рабочие структуры орга­низма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров.

 

12) филогенетическое развитие (закономерности его установ­лены Ч.Р.Дарвином). Базируется на прогрессивном размно­жении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество ви­дов. Прогрессивная эволюция прошла ряд ступеней. Это доклеточные, одноклеточные и многоклеточные организмы вплоть до человека.

При этом онтогенез человека повторяет филогенез (т. е. индиви­дуальное развитие проходит те же этапы, что и эволюционный процесс);

 

13) дискретность (прерывистость) и в то же время целост­ность. Жизнь представлена совокупностью отдельных организ­мов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тка­ней и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляет­ся генами, но ни один ген в отдельности не может определять развитие того или иного признака.

 

3.3Благодаря наличию потока информации клетка приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, передает в ряду поколений. В этом потоке участвуют ядро, макро молекулы, переносящие информацию в цитоплазму мРНК, цитоплазматический аппарат транскрипции рибосомы и полисомы, тРНК, ферменты активации аминокислот. Также функционируют геномы митохондрий, а в зеленых растениях — и хлоропластов.

 

Поток энергии обеспечивается механизмами энергообеспечения — брожением, фото — или хемосинтезом, дыханием. Дыхательный обмен включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот, использование выделяемой энергии для образования высококалорийного клеточного «топлива» в виде АТФ. Энергия АТФ в разнообразных процессах преобразуется

в тот или иной вид работы — химическую синтезы, осмотическую поддержание перепадов концентрации веществ, электрическую, механическую, регуляторную. Анаэробный гликолиз — процесс бескилородного расщепления глюкозы. Фотосинтез — механизм преобразования энергии солнечного света в энергию химических связей органических веществ.

4)))1.  Эволюционно-обусловленные уровни организации живого. Упорядоченность живых систем. Понятия компартментации и дискретности, их проявление на всех уровнях организации жизни. Уровни организации жизни, элементарная единица и элементарное явление.

Основные этапы развития жизни на Земле

 

Основная группа или ступень

Уровень

Биологическая микросистема

Молекулярный

Клеточный

Биологическая мезосистема

Тканевый

Органный

Организменный

Биологическая макросистема

Популяционно-видовой

Биоценотический

Биосферный

4.2Упорядоченность и сложность живых систем

Жизнь качественно превосходит другие формы существования материи в отношении многообразия и сложности химических компонентов и динамики протекающих в живом превращений. Живые системы характеризуются гораздо более высоким уровнем структурной и функциональной упорядоченности в пространстве и во времени.Живые системы обмениваются с окружающей средой энергией, веществом и информацией, являясь, таким образом, открытыми системами. При этом, в отличие от неживых систем, в них не происходит выравнивания энергетических разностей и перестройки структур в сторону более вероятных форм, а непрерывно происходит работа «против равновесия». На этом основаны ошибочные утверждения, что живые системы якобы не подчиняются второму закону термодинамики. Однако снижение энтропии в живых системах возможно только за счёт повышения энтропии в окружающей среде (негэнтропия), так что в целом процесс повышения энтропии продолжается, что вполне согласуется с требованиями второго закона термодинамики.

4.3 Дискре́тность (от лат. discretus — разделённый, прерывистый) — свойство, противопоставляемое непрерывности, прерывность. Высокая упорядоченность внутреннего содержимого эукариотиче-ской клетки достигается путем компартментации ее объема — подразделения на «ячейки», отличающиеся деталями химического (ферментного) состава. Компартментация (рис. 2.3) способствует пространственному разделению веществ и процессов в клетке. Отдельный компартмент представлен органеллой (лизосома) или ее частью (пространство, отграниченное внутренней мембраной митохондрии). Благодаря компартментации клеточного объема в эукариотической клетке наблюдается разделение функций между разными структурами. Одновременно различные структуры закономерно взаимодействуют друг с другом.

4.4В медико-биологической науке широко используют классификацию уровней в соответствии с важнейшими чертами, структурами и компонентами организма. Объектами служат организм, органы, ткани, клетки, внутриклеточные структуры, молекулы. В названной классификации выделяются молекулярно-генетический, клеточный, организменный или онтогенетический, популяционно-видовой, биогеоценотический уровни.

1.Молекулярно – генетический.

На этом уровне изучаются физико – химические процессы, происходящие в организме – синтез и разложение белков, липидов, нуклеиновых кислот, обмен веществ и энергии, копирование генетической информации. Элементарной единицей на молекулярно-генетическом уровне служит ген, в котором записан определенный объем биологической наследственной информации.

Элементарное явление на этом уровне – редупликация (самовоспроизведение) ДНК, в процессе которой могут возникать нарушения, изменяющие смысл генетической информации, приводящие к изменчивости. Биологическая информация, заключающаяся в молекулах ДНК, не участвует непосредственно в процессах жизнедеятельности. Она переходит в действующую форму, будучи перенесена в молекулы белков. Отмеченный перенос осуществляется благодаря механизму матричного синтеза, в котором исходная ДНК служит, как и в случае с редупликацией, матрицей (формой), но для образования не дочерней молекулы ДНК, а матричной РНК, контролирующей биосинтез белков. В основе этого процесса лежит принцип комплементарности. Это дает основание причислить матричный синтез информационных макромолекул также к элементарному явлению на молекулярно-генетическом уровне организации жизни.

2.Клеточный.

Элементарная структурная функциональная единица – клетка. Элементарное явление представлено реакциями клеточного метаболизма, составляющими основу потоков энергии, веществ и информации. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию, которые используются (в соответствии с имеющейся генетической информацией) в процессе биосинтеза белков и других соединений, необходимых организму. Таким образом, на клеточном уровне сопрягаются механизмы передачи биологической информации и превращения веществ и энергии. Элементарное явление на этом уровне служит энергетической и вещественной основой жизни на всех других уровнях ее организации.

3. Организменный.

Элементарной единицей организменного уровня является особь( организм) в ее развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет также назвать этот уровень онтогенетическим.

Закономерность изменения организма в индивидуальном развитии составляют элементарное явление данного уровня.

4. Популяционно – видовой.

Элементарной единицей популяционно-видового уровня служит популяция — совокупность особей одного вида. Объединение особей в популяцию происходит благодаря общности генофонда, используемого в процессе полового размножения для создания генотипов особей следующего поколения.

Популяция в силу возможности межпопуляционных скрещиваний представляет собой открытую генетическую систему. Действие на генофонд популяции элементарных эволюционных факторов, таких, как мутационный процесс, колебания численности особей, естественный отбор, приводит к эволюционно значимым изменениям генофонда, которые представляют элементарные явления на данном уровне.

5. Биогеоценотический и биосферный.

В процессе совместного исторического развития на определенной территории организмов разных систематических групп образуются динамичные, устойчивые во времени сообщества — биогеоценозы, которые служат элементарной единицей биогеоценотического (экосистемного) уровня. Элементарное явление на рассматриваемом уровне представлено потоками энергии и круговоротами веществ. Ведущая роль в этих круговоротах и потоках принадлежит живым организмам.

Биогеоценоз — это открытая в вещественном и энергетическом плане система. Биогеоценозы, различаясь по видовому составу и характеристикам абиотической своей части, объединены на планете в единый комплекс — область распространения жизни, или биосферу. Биосфера – это совокупность всех биогеоценозов, образующих единый комплекс, охватывающий все явления жизни на планете.

4.5элементарная единица эволюции (популяция)

4.6 Элементарное эволюционное явление - длительно направленное изменение генофонда популяции.

5)

 

Теории, касающиеся возникновения жизни на Земле, разнообразны и далеко не достоверны. Наиболее распространенными теориями являются следующие:

 

1. Креационизм – философско-методологическая концепция, в рамках которой всё многообразие органического мира, человечества, планеты Земля, а также мир в целом, рассматриваются как намеренно созданные неким сверх существом (Творцом) или божеством.

 

2. Теория стационарного состояния – согласно этой теории, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всегда, и у каждого вида есть лишь две возможности – либо изменение численности, либо вымирание.

 

3. Теория самопроизвольного зарождения. Согласно гипотезе Аристотеля о спонтанном зарождении, определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.

 

4. Теория панспермии утверждает, что жизнь могла возникнуть один или несколько раз в разное время в разных частях Галактики и Вселенной.

 

5. Теория Опарина.

По Опарину, процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:

 

а) возникновение органических веществ

 

б) образование из более простых органических веществ биополимеров ( белков, нуклеиновых кислот, полисахаридов, липидов и т.д.)

 

в) возникновение примитивных самовоспроизводящихся организмов.

6)










Последнее изменение этой страницы: 2018-04-12; просмотров: 399.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...