Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-РНК. Геном человека.




Экспрессия генов - программируемый геномом процесс биосинтеза белков и(или) РНК. При синтезе белков Э. г. включает транскрипцию - синтез РНК с участием ферментаРНК-полимеразы; трансляцию - синтез белка на матричной рибонуклеиновой кислоте, осуществляемый в рибосомах, и (часто) посттрансляционную модификацию белков.

Различают Э. г.: 1) конститутивную - происходящую в клетке независимо от внешних обстоятельств. Сюда относят экспрессию генов, определяющих синтез макромолекул, необходимых для жизнедеятельности всех клеток, и спец. генов (тканеспецифичная Э. г.), характерных для конкретного вида клеток. 2) Индуцибельная Э. г. определяется действием к.-л. агентов - индукторов. Ими м. б. гормоны, ростовые в-ва и в-ва, определяющие дифференцировку клеток (напр., ретиноевая к-та).

Альтернативный сплайсинг В генах эукариот участки, несущие информацию о белках или их частях (экзоны), чередуются с некодирующими участ- ками (интронами). В процессе транскрипции с ДНК снимаются копии со всего гена, а участки, соответствующие интронам, вырезаются из преРНК (процессинг). Участки, соответствую- щие экзонам, – сшиваются (сплайсинг). Однако вырезание и соединение участков РНК может происходить неоднозначно, а несколькими (альтернативными) способами, причём вместе с интронами могут вырезаться и некоторые экзоны. Например, если ген содержит три экзона (обозначим их греческими буквами α, β, γ), то возможны следующие варианта сплайсинга: αβγ, αβ, αγ, βγ. Как самостоятельные гены могут функциони- ровать и отдельные экзоны. Таким образом, с одной и той же последовательности ДНК могут быть получены разные комбинации, соответ- ствующие нескольким белкам.

Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.
Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации.
ДНК сама по себе представляет инертную молекулу и должна быть таковой по своей природе. Поэтому утверждение «жизнь — это ДНК» следует воспринимать очень осторожно. Для того чтобы информация, заложенная в ДНК, превратилась в жизненные функции, она должна быть превращена в действия, которые по частям представлены активностью белков-ферментов, а в полной мере — размножающимся организмом.
Переход представляет собой экспрессию генетической информации и осуществляется в два этапа. На первом действует аппарат РНК, включающий транскрипцию с ДНК на РНК с помощью РНК-полимеразы и трансляцию с РНК(второй этап), с помощью рибосомы, в белки. Именно эти последние и используются для образования как компонентов клетки, в том числе клеточных структур, так и ферментов. Действие РНК-полимеразы основано нa матричном копировании необходимого участка ДНК (гена или группы связанных генов — оперона) в однонитевую нить матричной РНК (мРНК), которая переносится затем к рибосоме, точнее, рибосомы нанизываются на нить мРНК с образованием полирибосомы. Синтез белка осуществляется путем присоединения в рибосоме молекулы транспортной РНК (тРНК) с аминокислотой к соответствующему участку на нити мРНК с образованием полипептидной цепи, соответствующей последовательности нуклеотидов мРНК.
Между аминокислотами и основаниями существует «генетический код», в котором каждой аминокислоте соответствуют кодоны, содержащие три нуклеотида.
РНК синтезируется на матрице ДНК посредством фермента РНК-полимеразы . РНК-полимераза состоит из четырех субъединиц и о-фактора, обеспечивающего распознавание участка старта. Связывание начинается с участка, называемого промотором (рис. ). Промотор может быть сильным и слабым. Сильный промотор инициирует синтез иРНК часто, слабый - гораздо реже. С другой стороны, промотор может быть регулируемым и нерегулируемым. Двойная нить (дуплекс) ДНК в этом месте расплетается, и считывается лишь одна нить. Синтез мРНК требует затраты одного эквивалента АТФ на нуклеотид. Промотор может начинать отдельный ген или же комбинацию генов для ферментов, объединенных общей функцией, — оперон. В конце гена или оперона располагается стоп-сигнал, позволяющий РНК-полимеразе отделиться.
Нить ДНК бактерий в этот момент напоминает «ламповый ерш» свисящими на ней мРНК, и это состояние можно увидеть на электронных фотографиях, где нити нуклеиновых кислот, благодаря фосфатам, видны как темные участки. На нити мРНК, еще не отделившейся от ДНК, может уже начинаться синтез белка благодаря присоединению к ней рибосом.
ДНК эукариот расположена в ядре. И требуется решения проблем транспорта мРНК внутри компартмента-лизованной клетки довольно больших размеров. У эукариот гены состоят из кодирующих участков, экзонов, и разделены некодиру-ющими — интронами. Образованная в ядре мРНК претерпевает процессинг (созревание), при котором, в частности, из нее удаляются некодирующие участки, и лишь затем она поступает для синтеза белка в рибосомы. Все это обусловливает значительное усложнение элементарного процесса.

Рис. Действие РНК-полимеразы
Особенности Регуляция экспрессии генов эукариот:
Особенностью прокариот является транскрибирование мРНК со всех структурных генов оперона в виде одного полицистронного транскрипта, с которого в дальнейшем синтезируются от
дельные пептиды. Экспрессия генов упрокариот регулируется главным образом на уровне транскрипции. Роль сигнальных веществ для запуска транскрипции играют молекулы-эффекторы , представляющие собой низкомолекулярные соединения, которые являются либо субстратом для фермента, либо продуктом ферментативной деятельности соответственно. Индукция и репрессия представляют собой разные стороны одного и того же явления. Малые молекулы, индуцирующие образование ферментов, способных метаболизировать их, называются индукторами . Те же, которые предотвращают образование ферментов, способных синтезировать их, - корепрессорами .
Молекулы-эффекторы не могут вступать в прямое взаимодействие с ДНК, посредником для них служит специальный регуляторный белок . Регуляторный белок, который связывается с ДНК в отсутствии индуктора, называется репрессором .
Особенности Регуляция экспрессии генов эукариот:

У эукариотических организмов механизм регуляции транскрипции гораздо более сложен. В результате клонирования генов эукариот обнаружены специфические последовательности, принимающие участие в транскрипции и трансляции.
Для эукариотической клетки характерно:
1. Наличие интронов и экзонов в молекуле ДНК.
2. Созревание и-РНК - вырезание интронов и сшивка экзонов.
3. Наличие регуляторных элементов, регулирующих транскрипцию, таких как:
а) промоторы - 3 вида, на каждый из которых садится специфическая полимераза б) модуляторы - последовательности ДНК, усиливающие уровень транскрипции; в) (энхансеры) усилители - последовательности, усиливающие уровень транскрипции и действующие независимо от своего положения относительно кодирующей части гена и состояния начальной точки синтеза РНК; г) терминаторы - специфические последовательности, прекращающие и трансляцию, и транскрипцию.

 

Геном человека — геном биологического вида Homo sapiens. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две — X-хромосома и Y-хромосома — определяют пол (XY — у мужчин или ХХ — у женщин). В ходе выполнения проекта «Геном человека» содержимое хромосом находящихся в стадии интерфазы в клеточном ядре (вещество эухроматин), было выписано в виде последовательности символов. В настоящее время эта последовательность активно используется по всему миру в биомедицине. В ходе исследований выяснилось, что человеческий геном содержит значительно меньшее число генов, нежели ожидалось в начале проекта. Только для 1,5 % всего материала удалось выяснить функцию, остальная часть составляет так называемую мусорную ДНК[2]. В эти 1,5 % входят гены, которые кодируют РНК и белки, а также их регуляторные последовательности, интроны и, возможно, псевдогены.










Последнее изменение этой страницы: 2018-04-12; просмотров: 561.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...