Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основное уравнение центробежных машин (уравнение Эйлера)




 

Основное уравнение определяет напор, создаваемый машиной.

В настоящее время существует две теории, с помощью которых получают основное уравнение центробежных машин – вихревая
и струйная теории.

Рассмотрим струйную теорию Эйлера.

При протекании жидкости через канал между лопатками колеса каждая частица жидкости участвует в двух основных движениях: относительном – вдоль линии канала со скоростью w и переносном
с окружной скоростью , где w – угловая скорость вращения колеса,
r – радиус окружности, на которой находится в данный момент частица жидкости.

Абсолютная скорость c частицы складывается геометрически
из скоростей переносного и относительного движений:

                                        (6.19)

В данном случае скорости переносного движения различны
для различных точек.

Будем считать, что траектория частицы жидкости совпадает
с очертанием профиля лопатки. Такую картину наблюдали бы, если бы число лопаток было бесконечно велико, а их толщина была бесконечно малой. Это означает, что относительная скорость  является касательной во всех точках к профилю лопатки. Переносная скорость u направлена
по касательной к окружности.

Индексами 1 обозначим величины, относящиеся к входному сечению, а индексами 2 – к выходному. Углы  и  (между касательной к окружности и касательной к лопатке) называются углами входа и выхода лопаток, углы  и  (между касательной к окружности и абсолютной скоростью) – углами входа и выхода жидкости (рис. 6.6).

Рис. 6.6. Картина скоростей рабочего колеса центробежного насоса

Для вывода основного уравнения центробежных машин воспользуемся теоремой о моменте количества движения. Для нашего случая она может быть сформулирована следующим образом: изменение
в единицу времени момента количества движения относительно оси колеса равна крутящему моменту на валу машины.

Крутящий момент на валу машины  определяется как:

                              (6.20)

Здесь  – мощность на валу машины, w – угловая скорость вращения вала,  – весовая подача машины,  – теоретический напор машины при бесконечном числе лопаток.

Момент количества движения жидкости в единицу времени

 

на входе жидкости в рабочее колесо:

на выходе:

изменение:

               (6.21)

 

 

Здесь  – массовая подача жидкости.

В выражении (6.21) неизвестные величины  заменим через известные. С этой целью общую скорость  разложим на две составляющие:

                                       (6.22)

Здесь  – меридианальная (радиальная) скорость, проходящая через центр рабочего колеса и момента не дает;  – проекция абсолютной скорости на направление переносной скорости u, для которой плечо r. С учетом этого перепишем уравнение (6.21):

              (6.23)

По теореме о количестве движения:

 или                (6.24)

Решая зависимость относительно , получим:

                         (6.25)

Это и есть основное уравнение центробежных машин – уравнение Эйлера. Оно было получено Эйлером в 1754 году, а центробежный насос был изобретен в 1835 году.

С целью достижения максимального значения  рабочие колеса обычно выполняют так, что жидкость входит на лопатку почти радиально. В этом случае a1 = 90 ° и . Тогда получим:

                                     (6.26)

Действительный напор H, создаваемый насосом, меньше теоретического по двум причинам:

– часть напора затрачивается на преодоление гидравлических сопротивлений внутри насоса;

– не все частицы жидкости в канале между двумя лопатками движутся по одинаковым траекториям, вследствие этого возникает циркуляция жидкости в канале.

Первое учитывается гидравлическим КПД , второй – коэффициентом конечного числа лопаток .

В результате для действительного напора  получим выражение:

                                      (6.27)

где f – коэффициент напора, f – коэффициент закручивания потока f = .

Для насосов со спиралеобразным отводом жидкости из рабочего колеса , для насосов турбинного типа (с направляющим аппаратом в корпусе насоса) .

По формуле (6.27) определяется, обычно, ориентировочное значение напора центробежного насоса.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 237.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...