Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тема 5: РАДИАЦИОННЫЙ ДОЗИМЕТРИЧЕСКИЙ КОНТРОЛЬ ПРИ РАБОТЕ С ИСТОЧНИКАМИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ




РАДИАЦИОННЫЙ ДОЗИМЕТРИЧЕСКИЙ КОНТРОЛЬ является неотъемлемой частью системы радиационной безопасности учреждения и должен обеспечивать получение необходимой информации:

· о дозе облучения персонала.

· о состоянии радиационной обстановки в учреждении, во внешней среде.

В соответствии с Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99) радиационный контроль при работе с техногенными источниками излучения должен осуществляться за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения.

Вклад природных источников излучения в облучение персонала в производственных условиях должен контролироваться и учитываться при оценке доз в тех случаях, когда он превышает 1 мЗв в год.

Индивидуальный контроль за облучением персонала в зависимости от характера работ включает:

- радиометрический контроль за загрязненностью кожных покровов и средств индивидуальной защиты;

- контроль за характером, динамикой и уровнями поступления радиоактивных веществ в организм с использованием методов прямой и косвенной радиометрии;

- контроль с использованием индивидуальных дозиметров за дозой внешнего бета-, гамма- и рентгеновского излучений, нейтронов, а также смешанного излучения.

По результатам радиационного контроля должны быть рассчитаны значения эквивалентных и эффективных доз у персонала.

Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

- измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

- измерение мощности дозы рентгеновского и гамма-излучений, плотности потоков бета-частиц, нейтронов и других видов ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;

- определение объемной активности газов и аэрозолей в воздухе рабочих помещений;

- измерение или оценку выбросов и сбросов радиоактивных веществ;

- контроль за уровнями загрязнения радиоактивными веществами транспортных средств;

- определение уровня загрязнения в контролируемых зонах.

В системе мероприятий по обеспечению радиационной безопасности различных групп населения исключительно важное значение принадлежит инструментальному объективному дозиметрическому контролю. В отличие от многих других физических и химических факторов окружающей среды ионизирующая радиация субъективно не воспринимается органами чувств человека (даже при весьма высоких уровнях). Поэтому объективное суждение о наличии, характере и уровнях радиации достоверно может быть только в результате инструментально-дозиметрического исследования.

Объекты и задачи такого исследования разнообразны. Главными из них являются:

1. Определение фактической дозы внеш­него ионизирующего облучения в естествен­ных условиях, а также в различных условиях использования искусственных источ­ников радиации или аварийных ситуациях.

2. Определение эффективности устройств и средств защиты от ионизирующего излучения.

3. Определение наличия и уровней загрязнения объектов окружающей среды радиоактивными нуклидами.

4. Определение содержания радиоактивных нуклидов в воздухе, почве, воде, пищевых продуктах.

При необходимости определения нуклидного состава дозиметрическое исследование сочетается с химическим.

МЕТОДЫ КОНТРОЛЯ РАДИАЦИОННОЙ ОБСТАНОВКИ.

Физические основы регистрации и дозиметрии ионизирующих излучений

Основа регистрации любого вида излучения — его взаимо­действие с веществом детектора. Детектор при этом рассматривается как устройство, на вход которого поступают ионизирующие частицы и на выходе появляются сигналы. В зависимости от типа детектора сигналом могут быть вспышки света (сцинтилляционный детектор), импульсы тока (ионизационный детектор), пузырьки пара (пузырьковая камера), капельки жидкости (камера Вильсона). Вторая часть регистрирующей системы - это измерительный комплекс, назначение которого состоит в преобразовании поступающего с детектора сигнала к виду, приводящему в действие регистрирующее устройство (стрелочный прибор, цифровой дисплей, самописец, меха­нический счетчик и т.п.).

 Ионизационный метод регистрации и дозиметрии

При прохождении любого ионизирующего излучения в газах в результате ионизации образуются электроны и положительные ионы. Если ионизация происходит в слое газа между двумя электродами, имеющими различные потенциалы, то электроны и ионы будут дви­гаться к соответствующим электродам и в цепи возникнет ток. Газовые ионизационные детекторы представляют собой конденсаторы, за­полненные каким-либо газом, и называются ионизационными камерами.

Ионизационные камеры подразделяются по следующим основным признакам: принцип действия (токовые, импульсные); конструктивное оформление (плоские, цилиндрические, сферические); назначение (регистрация α-, β-, g-излучения) и др.

Регистрация ионизирующих излучений полупроводниковыми детекторами

Полупроводниковый детектор является аналогом иониза­ционной камеры с твердотельным чувствительным объемом. Плотность вещества чувствительного объема в полупроводнике примерно на три порядка выше плотности газа в ионизационной камере, а энергия образования пары носителей на порядок ниже, что дает увеличение поглощенной энергии в единице объема полупроводника в 104 раз. Высокая чувствительность при небольших размерах — основное преимущество полупроводниковых детекторов.

Сцинтилляционный метод дозиметрии

Физическая основа сцинтилляционного метода - возбуждение и ионизация атомов и молекул вещества при прохождении через него заряженных частиц. Через короткое время они переходят в основное состояние, испуская световое излучение, спектр которого зависит от структуры энергетических уровней атомов и молекул вещества. Вспышка света может появиться также и при прохождении через сцинтиллятор косвенно ионизирующего излучения фотонов и нейтронов за счет вторичных частиц.

Люминесцентные методы дозиметрии

Под люминесцентными методами в основном понимаются методы, основанные только на радиофотолюминесценции и радиотермолюминесценции.

Сущность метода заключается в том, что образованные в люмино­форе под действием ионизирующего излучения про­исходит накопление поглощенной энергии, которая может быть затем освобождена при дополнительном возбуждении, которое может быть вызвано либо освещением люминофора ультрафиолетовым излучением определенной длины волны, либо нагревом. Наблюдаемые при этом оптические эффекты могут служить мерой поглощения энергии.










Последнее изменение этой страницы: 2018-04-12; просмотров: 424.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...