Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод двух множителей Бернулли




Общее решение уравнения (5.2) ищем в виде произведения двух функций

,                                                                                                   (5.3)

где  – неизвестные функции, причем одну из них выберем произвольно, а другую определенным образом. Заметим, что уравнение (5.2), как и уравнение (5.1) не имеет (тривиального) нулевого решения, то есть функции u, v не равны тождественно нулю.

Учитывая, что , имеем  ( , ). Предполагая, что функция (5.3) должна являться решением уравнения (5.2), подставим выражения для ,  в его левую часть. Получим

.

Подберем функцию  таким образом, чтобы выражение, стоящее в скобках обнулилось: ; при этом получим второе уравнение  для нахождения другой функции . Итак, получаем систему

,                                                                                       (5.4)

.                                                                                             (5.5)

Первое уравнение – дифференциальное уравнение с разделяющимися переменными относительно функции  

 (так как функцию  выбираем произвольно, то мы можем брать не общее решение, а только одно из частных решений). Итак,

.

Найдя функцию , из уравнения (5.5) находим функцию :

. Используя равенство (5.5), получаем общее решение уравнения в виде

=  (C=const). (5.6)

Замечание 2. Итак, показано, как найти общее решение ЛДУ-I методом Бернулли. Заметим, что ЛДУ-I обязательно имеет общее решение (так как две функции последовательно выражаются через неопределенные интегралы от непрерывных функций). Однако на практике бывают такие случаи, что нельзя вычислить конечным числом операций получающиеся неопределенные интегралы.

Пример 1. Найти методом Бернулли общее решение ЛДУ-I

.

Решение: В данном случае  (обе функции непрерывны на всей числовой оси). Можно, конечно, сразу использовать формулу (5.6), подставив в нее исходные данные, но обычно это не делается, а просто применяется сама методика решения задачи. Ищем решение в виде (5.3). Получаем

(5.7)

Первое уравнение системы (5.7) дает

 

Теперь знание функции v=v(x) (заметим, что здесь мы нашли явную зависимость v от x) поможет нам определить функцию u=u(x). Подставляя во второе уравнение системы (5.7) функцию , получим

Неопределенный интеграл  вычисляется сначала заменой , а затем интегрированием по частям

Итак, общее решение ЛДУ-I имеет вид

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 229.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...